[1] |
郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23):3856-3864. ZHENG C G, ZHAO Y C, GUO X. Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34(23):3856-3864.
|
[2] |
WALL T, STANGER R, SANTOS S. Demonstrations of coal-fired oxy-fuel technology for carbon capture and storage and issues with commercial deployment[J]. International Journal of Greenhouse Gas Control, 2011, 5(S1):S5-S15.
|
[3] |
TAN Y, JIA L, WU Y. Some combustion characteristics of biomass and coal cofiring under oxy-fuel conditions in a pilot-scale circulating fluidized combustor[J]. Energy& Fuel, 2013, 27(11):7000-7007.
|
[4] |
TAN Y, JIA L, WU Y, et al. Experiences and results on a 0. 8 MWth oxy-fuel operation pilot-scale circulating fluidized bed[J]. Applied Energy, 2012, 92:343-347.
|
[5] |
NSAKALA N Y, LILJEDAHL G N. Greenhouse gas emissions control by oxygen firing in circulating fluidized boilers[R]. Office of Scientific & Technical Information, 2003.
|
[6] |
CZAKIERT T, BIS Z, MUSKALA W, et al. Fuel conversion from oxy-fuel combustion in a circulating fluidized bed[J]. Fuel Processing Technology, 2006, 87(6):531-538.
|
[7] |
ROMEO L M, DIEZ L I, GUEDEA I. Design and operation assessment of an oxy-fuel fluidized bed combustor[J]. Experimental Thermal & Fluid Science, 2011, 35(3):477-484.
|
[8] |
KRZYWANSKI J, CZAKIERT T, MUSKALA W, et al. Modelling of CO2, CO, SO2, O2 and NO? emissions from the oxy-fuel combustion in a circulating fluidized bed[J]. Fuel Processing Technology, 2011, 92(3):590-596.
|
[9] |
BO L, GOMEZ-BAREA A. Oxy-fuel combustion in circulating fluidized bed boilers[J]. Applied Energy, 2014, 125(2):308-318.
|
[10] |
李汉卿, 王长安, 朱晨钊, 等. O2/CO2气氛对准东煤灰熔融行为和微观理化特性的影响[J]. 化工学报, 2018, 69(6):2632-2638. LI H Q, WANG C A, ZHU C Z, et al. Influence of oxy-fuel atmosphere on melting behavior and microscopic physicochemical properties of Zhundong coal ash[J]. CIESC Journal, 2018, 69(6):2632-2638.
|
[11] |
HOTTA A, FOSTER W E O. CFB technology solutions for CO2 capture[C]//3rd Oxy-fuel Combustion Conference. Ponferrada, Spain, 2013.
|
[12] |
LUPION M, NAVARRETE B, OTERO P, et al. Experimental programme in CIUDEN's CO2 capture technology development plant for power generation[J]. Chemical Engineering Research and Design, 2011, 89(9):1494-1500.
|
[13] |
LUPION M, ALVAREZ I, OTERO P, et al. 30 MWth CIUDEN oxy-CFB boiler-first experiences[J]. Energy Procedia, 2013, 37:6179-6188.
|
[14] |
YANG X, Chen A, XIE J, et al. Emissions of NO and N2O in a decoupled circulating fluidized bed combustor during coal and biomass co-firing[C]//Proceeding of International Symposium on EcoTopia Science. Nagoya, Japan, 2007.
|
[15] |
WANG X, REN Q, LI W, et al. Thermogravimetry-mass spectrometry analysis of nitrogen transformation during oxy-fuel combustion of coal and biomass mixtures[J]. Energy & Fuels, 2015, 29(4):2462-2470.
|
[16] |
WANG X, REN Q, LI L, et al. TG-MS analysis of nitrogen transformation during combustion of biomass with municipal sewage sludge[J]. Journal of Thermal Analysis & Calorimetry, 2016, 123(3):2061-2068.
|
[17] |
王昕. 煤/生物质循环流化床富氧燃烧及氮转化特性试验研究[D]. 北京:中国科学院工程热物理研究所, 2017. WANG X. Experimental study on oxygen-rich combustion and nitrogen conversion characteristics of coal/biomass circulating fluidized bed[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017.
|
[18] |
WANG X, REN Q, LI W, et al. Nitrogenous gas emissions from coal/biomass co-combustion under a high oxygen concentration in a circulating fluidized bed[J]. Energy & Fuels, 2017, 31(3):3234-3242.
|
[19] |
PU G, ZAN H, DU J, et al. Study on NO emission in the oxy-fuel combustion of co-firing coal and biomass in a bubbling fluidized bed combustor[J]. Bioresources, 2017, 12(1):1890-1902.
|
[20] |
刘倩, 钟文琪, 苏伟, 等. 基于热重-质谱联用的煤粉富氧燃烧动力学及污染物生成特性[J]. 化工学报, 2018, 69(1):523-530. LIU Q, ZHONG W Q, SU W, et al. Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis[J]. CIESC Journal, 2018, 69(1):523-530.
|
[21] |
DUAN L, DUAN Y, ZHAO C, et al. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor[J]. Fuel, 2015, 150:8-13.
|
[22] |
KAYAHAN U, ÖZDO?AN S. Oxygen enriched combustion and co-combustion of lignites and biomass in a 30 kWth circulating fluidized bed[J]. Energy, 2016, 116:317-328.
|
[23] |
GIL M V, RIAZA J, ÁLVAREZ L, et al. Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres[J]. Energy, 2012, 48(1):510-518.
|
[24] |
FARROW T S, SUN C, SNAPE C E. Impact of biomass char on coal char burn-out under air and oxy-fuel conditions[J]. Fuel, 2013, 114:128-134.
|
[25] |
SMART J P, PATEL R, RILEY G S. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout[J]. Combust and Flame, 2010, 157(12):2230-2240.
|
[26] |
TABET F, GÖKALP I. Review on CFD based models for co-firing coal and biomass[J]. Renewable and Sustainable Energy Reviews, 2015, 51:1101-1114.
|
[27] |
LUPIÁÑEZ C, MAYORAL M C, DÍEZ L I, et al. On the oxy-combustion of lignite and corn stover in a lab-scale fluidized bed reactor[J]. Biomass and Bioenergy, 2017, 96:152-161.
|
[28] |
LUPIÁÑEZ C, CARMEN M M, DÍEZ L I, et al. The role of limestone during fluidized bed oxy-combustion of coal and biomass[J]. Applied Energy, 2016, 184:670-680.
|
[29] |
LUPIÁÑEZ C, MAYORAL M C, GUEDEA I, et al. Effect of co-firing on emissions and deposition during fluidized bed oxy-combustion[J]. Fuel, 2016, 184:261-268.
|
[30] |
KUMAR R, SINGH R I. An investigation in 20 kWth oxygen-enriched bubbling fluidized bed combustor using coal and biomass[J]. Fuel Processing Technology, 2016, 148:256-268.
|
[31] |
RIAZA J, GIL M V, ÁLVAREZ L, et al. Oxy-fuel combustion of coal and biomass blends[J]. Energy, 2012, 41(1):429-435.
|
[32] |
巩志强, 夏红德, 刘志成, 等. 煤焦燃烧含氮硫气体生成的TG-MS定量分析[J]. 煤炭转化, 2016, 39(1):86-91. GONG Z Q, XIA H D, LIU Z C, et al. Quantitative study on nitrogen and sulfur gas emissions in combustion of Shenmu coal and Shenmu char by TG-MS[J]. Coal Conversion, 2016, 39(1):86-91.
|
[33] |
曾玺, 王芳, 韩江则, 等. 微型流化床反应分析及其对煤焦气化动力学的应用[J]. 化工学报, 2013, 64(1):289-296. ZENG X, WANG F, HAN J Z, et al. Micro fluidized bed reaction analysis and its application to coal char gasification kinetics[J]. CIESC Journal, 2013, 64(1):289-296.
|
[34] |
余剑, 朱剑虹, 岳君容, 等. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报, 2009, 60(10):2669-2674. YU J, ZHU J H, YUE J R, et al. Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. CIESC Journal, 2009, 60(10):2669-2674.
|
[35] |
曾玺, 王芳, 余剑, 等. 微型流化床反应分析的方法基础与应用研究[J]. 化工进展, 2016, 35(6):1687-1697. ZENG X, WANG F, YU J, et al. Fundamentals and applications of micro fluidized bed reaction analysis[J]. Chemical Industry and Engineering Progress, 2016, 35(6):1687-1697.
|
[36] |
郭洋洲, 赵义军, 刘鹏, 等. 过程质谱仪测量气体浓度快速变化过程的应用研究[J]. 分析化学, 2016, 44(9):1335-1341. GUO Y Z, ZHAO Y J, LIU P, et al. Use of a process mass spectrometer to measure rapid change of gas concentration[J]. Chinese Journal of Analytical Chemistry, 2016, 44(9):1335-1341.
|