CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1255-1262.DOI: 10.11949/j.issn.0438-1157.20180893
• Thermodynamics • Previous Articles Next Articles
Xiaoxue CAO1(),Shaochang JI2,Wenjie KUANG1,Anping LIAO1,Ping LAN1,Jinyan ZHANG1(
)
Received:
2018-08-03
Revised:
2018-11-01
Online:
2019-04-05
Published:
2019-04-05
Contact:
Jinyan ZHANG
曹小雪1(),吉绍长2,匡雯婕1,廖安平1,蓝平1,张金彦1(
)
通讯作者:
张金彦
作者简介:
<named-content content-type="corresp-name">曹小雪</named-content>(1992—),女,硕士,<email>cxx818221@163.com</email>|张金彦(1984—),女,博士,副教授,<email>zjy_03@126.com</email>
基金资助:
CLC Number:
Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Crystallization thermodynamics of L-phenylalanine in methanol-water solvent[J]. CIESC Journal, 2019, 70(4): 1255-1262.
曹小雪, 吉绍长, 匡雯婕, 廖安平, 蓝平, 张金彦. 甲醇-水溶剂中L-苯丙氨酸结晶热力学[J]. 化工学报, 2019, 70(4): 1255-1262.
T/K | x exp×103 | x cal,Apel×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 | T/K | x exp ×103 | x cal,Apel ×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 |
---|---|---|---|---|---|---|---|---|---|
V methanol∶V water =4∶6 | V methanol∶V water =2∶8 | ||||||||
322.15 | 3.29 | 3.27 | 3.37 | 3.33 | 322.15 | 3.49 | 3.52 | 3.67 | 3.62 |
317.15 | 2.97 | 3.00 | 3.02 | 3.00 | 317.15 | 3.36 | 3.32 | 3.34 | 3.32 |
312.15 | 2.70 | 2.72 | 2.71 | 2.70 | 312.15 | 3.09 | 3.08 | 3.03 | 3.02 |
307.15 | 2.46 | 2.45 | 2.42 | 2.42 | 307.15 | 2.78 | 2.82 | 2.75 | 2.75 |
302.15 | 2.20 | 2.18 | 2.15 | 2.16 | 302.15 | 2.53 | 2.54 | 2.49 | 2.50 |
297.15 | 1.94 | 1.92 | 1.91 | 1.92 | 297.15 | 2.27 | 2.25 | 2.24 | 2.26 |
293.15 | 1.68 | 1.72 | 1.73 | 1.74 | 293.15 | 2.02 | 2.02 | 2.06 | 2.08 |
V methanol∶V water =3∶7 | V methanol∶V water =15∶85 | ||||||||
322.15 | 3.42 | 3.43 | 3.52 | 3.48 | 322.15 | 3.57 | 3.59 | 3.66 | 3.64 |
317.15 | 3.18 | 3.15 | 3.17 | 3.15 | 317.15 | 3.38 | 3.36 | 3.38 | 3.36 |
312.15 | 2.85 | 2.87 | 2.85 | 2.85 | 312.15 | 3.15 | 3.13 | 3.11 | 3.10 |
307.15 | 2.55 | 2.59 | 2.56 | 2.56 | 307.15 | 2.86 | 2.89 | 2.85 | 2.86 |
302.15 | 2.38 | 2.32 | 2.29 | 2.29 | 302.15 | 2.64 | 2.64 | 2.62 | 2.62 |
297.15 | 2.03 | 2.05 | 2.04 | 2.05 | 297.15 | 2.40 | 2.40 | 2.39 | 2.40 |
293.15 | 1.83 | 1.84 | 1.85 | 1.86 | 293.15 | 2.20 | 2.20 | 2.23 | 2.22 |
V methanol∶V water =25∶75 | V methanol∶V water =1∶9 | ||||||||
322.15 | 3.46 | 3.47 | 3.60 | 3.55 | 322.15 | 3.62 | 3.66 | 3.70 | 3.69 |
317.15 | 3.24 | 3.21 | 3.24 | 3.21 | 317.15 | 3.52 | 3.44 | 3.45 | 3.44 |
312.15 | 2.93 | 2.94 | 2.91 | 2.90 | 312.15 | 3.21 | 3.22 | 3.20 | 3.21 |
307.15 | 2.62 | 2.65 | 2.60 | 2.60 | 307.15 | 2.99 | 3.00 | 2.98 | 2.98 |
302.15 | 2.38 | 2.36 | 2.32 | 2.33 | 302.15 | 2.74 | 2.78 | 2.76 | 2.76 |
297.15 | 2.09 | 2.08 | 2.07 | 2.08 | 297.15 | 2.56 | 2.55 | 2.56 | 2.56 |
293.15 | 1.84 | 1.85 | 1.88 | 1.89 | 293.15 | 2.40 | 2.38 | 2.40 | 2.40 |
Table 1 Experimental solubility of L-Phe in methanol-water solvent mixtures
T/K | x exp×103 | x cal,Apel×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 | T/K | x exp ×103 | x cal,Apel ×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 |
---|---|---|---|---|---|---|---|---|---|
V methanol∶V water =4∶6 | V methanol∶V water =2∶8 | ||||||||
322.15 | 3.29 | 3.27 | 3.37 | 3.33 | 322.15 | 3.49 | 3.52 | 3.67 | 3.62 |
317.15 | 2.97 | 3.00 | 3.02 | 3.00 | 317.15 | 3.36 | 3.32 | 3.34 | 3.32 |
312.15 | 2.70 | 2.72 | 2.71 | 2.70 | 312.15 | 3.09 | 3.08 | 3.03 | 3.02 |
307.15 | 2.46 | 2.45 | 2.42 | 2.42 | 307.15 | 2.78 | 2.82 | 2.75 | 2.75 |
302.15 | 2.20 | 2.18 | 2.15 | 2.16 | 302.15 | 2.53 | 2.54 | 2.49 | 2.50 |
297.15 | 1.94 | 1.92 | 1.91 | 1.92 | 297.15 | 2.27 | 2.25 | 2.24 | 2.26 |
293.15 | 1.68 | 1.72 | 1.73 | 1.74 | 293.15 | 2.02 | 2.02 | 2.06 | 2.08 |
V methanol∶V water =3∶7 | V methanol∶V water =15∶85 | ||||||||
322.15 | 3.42 | 3.43 | 3.52 | 3.48 | 322.15 | 3.57 | 3.59 | 3.66 | 3.64 |
317.15 | 3.18 | 3.15 | 3.17 | 3.15 | 317.15 | 3.38 | 3.36 | 3.38 | 3.36 |
312.15 | 2.85 | 2.87 | 2.85 | 2.85 | 312.15 | 3.15 | 3.13 | 3.11 | 3.10 |
307.15 | 2.55 | 2.59 | 2.56 | 2.56 | 307.15 | 2.86 | 2.89 | 2.85 | 2.86 |
302.15 | 2.38 | 2.32 | 2.29 | 2.29 | 302.15 | 2.64 | 2.64 | 2.62 | 2.62 |
297.15 | 2.03 | 2.05 | 2.04 | 2.05 | 297.15 | 2.40 | 2.40 | 2.39 | 2.40 |
293.15 | 1.83 | 1.84 | 1.85 | 1.86 | 293.15 | 2.20 | 2.20 | 2.23 | 2.22 |
V methanol∶V water =25∶75 | V methanol∶V water =1∶9 | ||||||||
322.15 | 3.46 | 3.47 | 3.60 | 3.55 | 322.15 | 3.62 | 3.66 | 3.70 | 3.69 |
317.15 | 3.24 | 3.21 | 3.24 | 3.21 | 317.15 | 3.52 | 3.44 | 3.45 | 3.44 |
312.15 | 2.93 | 2.94 | 2.91 | 2.90 | 312.15 | 3.21 | 3.22 | 3.20 | 3.21 |
307.15 | 2.62 | 2.65 | 2.60 | 2.60 | 307.15 | 2.99 | 3.00 | 2.98 | 2.98 |
302.15 | 2.38 | 2.36 | 2.32 | 2.33 | 302.15 | 2.74 | 2.78 | 2.76 | 2.76 |
297.15 | 2.09 | 2.08 | 2.07 | 2.08 | 297.15 | 2.56 | 2.55 | 2.56 | 2.56 |
293.15 | 1.84 | 1.85 | 1.88 | 1.89 | 293.15 | 2.40 | 2.38 | 2.40 | 2.40 |
V methanol∶V water | A | B | C | R 2 | RMSD |
---|---|---|---|---|---|
4∶6 | 169.60 | ?9805.76 | ?25.09 | 0.9970 | 3.49×10?5 |
3∶7 | 178.46 | ?10150.70 | ?26.43 | 0.9949 | 1.67×10?5 |
25∶75 | 246.33 | ?13260.89 | ?36.51 | 0.9983 | 2.63×10?5 |
2∶8 | 315.16 | ?16202.01 | -46.84 | 0.9926 | 1.86×10?5 |
15∶85 | 149.99 | ?8473.50 | ?22.39 | 0.9981 | 3.15×10?5 |
1∶9 | 80.57 | ?5137.36 | ?12.16 | 0.9903 | 2.37×10?5 |
Table 2 Regressed parameters and calculated root-mean-square deviation (RMSD) for L-Phe in methanol-water solvent mixtures by Apelblat equation
V methanol∶V water | A | B | C | R 2 | RMSD |
---|---|---|---|---|---|
4∶6 | 169.60 | ?9805.76 | ?25.09 | 0.9970 | 3.49×10?5 |
3∶7 | 178.46 | ?10150.70 | ?26.43 | 0.9949 | 1.67×10?5 |
25∶75 | 246.33 | ?13260.89 | ?36.51 | 0.9983 | 2.63×10?5 |
2∶8 | 315.16 | ?16202.01 | -46.84 | 0.9926 | 1.86×10?5 |
15∶85 | 149.99 | ?8473.50 | ?22.39 | 0.9981 | 3.15×10?5 |
1∶9 | 80.57 | ?5137.36 | ?12.16 | 0.9903 | 2.37×10?5 |
V methanol∶V water | λ | h | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 0.042 | 48.74 | 0.9889 | 4.85×10?5 |
3∶7 | 0.038 | 50.96 | 0.9908 | 5.22×10?5 |
25∶75 | 0.041 | 48.55 | 0.9913 | 5.88×10?5 |
2∶8 | 0.028 | 60.38 | 0.9865 | 7.45×10?5 |
15∶85 | 0.018 | 78.15 | 0.9950 | 4.02×10?5 |
1∶9 | 0.012 | 96.40 | 0.9945 | 4.15×10?5 |
Table 3 Regressed parameters and calculated root-mean-square deviation (RMSD) for L-Phe in methanol-water solvent mixtures by λh equation
V methanol∶V water | λ | h | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 0.042 | 48.74 | 0.9889 | 4.85×10?5 |
3∶7 | 0.038 | 50.96 | 0.9908 | 5.22×10?5 |
25∶75 | 0.041 | 48.55 | 0.9913 | 5.88×10?5 |
2∶8 | 0.028 | 60.38 | 0.9865 | 7.45×10?5 |
15∶85 | 0.018 | 78.15 | 0.9950 | 4.02×10?5 |
1∶9 | 0.012 | 96.40 | 0.9945 | 4.15×10?5 |
V methanol∶V water | a | b | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 2110.23 | 0.84 | 0.9922 | 3.26×10?5 |
3∶7 | 2037.10 | 0.66 | 0.9919 | 4.41×10?5 |
25∶75 | 2050.55 | 0.73 | 0.9922 | 4.70×10?5 |
2∶8 | 1813.77 | 0.0097 | 0.9858 | 6.31×10?5 |
15∶85 | 1595.19 | -0.66 | 0.9954 | 3.28×10?5 |
1∶9 | 1399.38 | -1.26 | 0.9932 | 3.83×10?5 |
Table 4 Regressed parameters and calculated root-mean-square deviation (RMSD) for L-Phe in methanol-water solvent mixtures by van’t Hoff equation
V methanol∶V water | a | b | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 2110.23 | 0.84 | 0.9922 | 3.26×10?5 |
3∶7 | 2037.10 | 0.66 | 0.9919 | 4.41×10?5 |
25∶75 | 2050.55 | 0.73 | 0.9922 | 4.70×10?5 |
2∶8 | 1813.77 | 0.0097 | 0.9858 | 6.31×10?5 |
15∶85 | 1595.19 | -0.66 | 0.9954 | 3.28×10?5 |
1∶9 | 1399.38 | -1.26 | 0.9932 | 3.83×10?5 |
溶液水体积分数/% | x×103 | 稳定晶型 | 溶液水体积分数/% | x×103 | 稳定晶型 |
---|---|---|---|---|---|
297.15 K | 302.15 K | ||||
40 | 1.79 | anhydrous | 70 | 2.38 | anhydrous |
50 | 1.81 | anhydrous | 75 | 2.38 | anhydrous |
60 | 1.93 | anhydrous | 80 | 2.53 | anhydrous |
65 | 1.97 | anhydrous | 85 | 2.64 | anhydrous |
70 | 2.03 | anhydrous | 87 | 2.67 | anhydrous |
75 | 2.08 | anhydrous | 90 | 2.74 | anhydrous |
80 | 2.27 | anhydrous | 93 | 2.83 | anhydrous |
81 | 2.30 | anhydrous | 94 | 2.88 | anhydrous |
82 | 2.34 | anhydrous | 95 | 2.92 | anhydrous |
83 | 2.36 | anhydrous | 96 | 2.89 | anhydrous+monohydrate |
84 | 2.38 | anhydrous | 97 | 2.94 | monohydrate |
85 | 2.40 | anhydrous | 99 | 2.98 | monohydrate |
86 | 2.47 | anhydrous | 100 | 3.01 | monohydrate |
88 | 2.50 | anhydrous | |||
89 | 2.37 | anhydrous+monohydrate | |||
90 | 2.46 | monohydrate | |||
100 | 2.57 | monohydrate |
Table 5 Molar fraction data and stable crystal form of L-Phe in mixed solvents
溶液水体积分数/% | x×103 | 稳定晶型 | 溶液水体积分数/% | x×103 | 稳定晶型 |
---|---|---|---|---|---|
297.15 K | 302.15 K | ||||
40 | 1.79 | anhydrous | 70 | 2.38 | anhydrous |
50 | 1.81 | anhydrous | 75 | 2.38 | anhydrous |
60 | 1.93 | anhydrous | 80 | 2.53 | anhydrous |
65 | 1.97 | anhydrous | 85 | 2.64 | anhydrous |
70 | 2.03 | anhydrous | 87 | 2.67 | anhydrous |
75 | 2.08 | anhydrous | 90 | 2.74 | anhydrous |
80 | 2.27 | anhydrous | 93 | 2.83 | anhydrous |
81 | 2.30 | anhydrous | 94 | 2.88 | anhydrous |
82 | 2.34 | anhydrous | 95 | 2.92 | anhydrous |
83 | 2.36 | anhydrous | 96 | 2.89 | anhydrous+monohydrate |
84 | 2.38 | anhydrous | 97 | 2.94 | monohydrate |
85 | 2.40 | anhydrous | 99 | 2.98 | monohydrate |
86 | 2.47 | anhydrous | 100 | 3.01 | monohydrate |
88 | 2.50 | anhydrous | |||
89 | 2.37 | anhydrous+monohydrate | |||
90 | 2.46 | monohydrate | |||
100 | 2.57 | monohydrate |
体系 | (g 12?g 11)/(J/mol) | (g 21?g 22)/(J/mol) | | |
---|---|---|---|---|
甲醇+水 | 107.3832 | 469.5509 | 18.018883 | 39.57286 |
Table 6 Parameters of Wilson equation
体系 | (g 12?g 11)/(J/mol) | (g 21?g 22)/(J/mol) | | |
---|---|---|---|---|
甲醇+水 | 107.3832 | 469.5509 | 18.018883 | 39.57286 |
1 | Lu J , Li Z , Jiang X L , et al . Solubility of L-phenylalanine in aqueous solutions[J]. Journal of Chemical Engineering of Japan, 2010, 43(9): 810–813. |
2 | Lu J , Lin Q , Li Z , et al . Solubility of L-phenylalanine anhydrous and monohydrate forms: experimental measurements and predictions[J]. Journal of Chemical & Engineering Data, 2012, 57(57): 1492-1498. |
3 | Lu J , Wang J , Li Z , et al . Characterization and pseudopolymorphism of L-phenylalanine anhydrous and monohydrate forms[J]. African Journal of Pharmacy and Pharmacology, 2012, 6(4): 269-277. |
4 | Li R R , Ye S F , Chen Y F . Solubility of sulfachloropyridazine in pure and binary solvent mixtures and investigation of intermolecular interactions[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 2002-2008. |
5 | Chao Y , Lo T , Luo N . Selective production of L-aspartic acid and L-Phenylalanine by coupling reactions of aspartase and aminotransferase in escherichia coli[J]. Enzyme & Microbial Technology, 2000, 27(1): 19-25. |
6 | Xu H , Wei P , Zhou H , et al . Efficient production of L-phenylalanine catalyzed by a coupled enzymatic system of transaminase and aspartase[J]. Enzyme and Microbial Technology, 2003, 33(5): 537-543. |
7 | Edahiro J , Nakamura M , Seki M , et al . Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of L-phenylalanine into the medium[J]. Journal of Bioscience and Bioengineering, 2005, 99(1): 43-47. |
8 | Eyal A M , Bressler E . Industrial separation of carboxylic and amino acids by liquid membranes: applicability, process considerations and potential advantage[J]. Biotechnology & Bioengineering, 2010, 41(3): 287-295. |
9 | And C J L , Rousseau R W . Solubilities of and transformations between the anhydrous and hydrated forms of L-serine in water−methanol solutions[J]. Crystal Growth & Design, 2006, 6(8): 1808-1812. |
10 | Cuellar M C , Herreilers S N , Straathof A J J , et al . Limits of operation for the integration of water removal by membranes and crystallization of L-phenylalanine[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1566-1573. |
11 | O’Mahony M A , Croker D M , Rasmuson A C , et al . Measuring the solubility of a quickly transforming metastable polymorph of carbamazepine[J]. Organic Process Research & Development, 2013, 17(3): 512-518. |
12 | Hanna M , Shan N , Cheney M L , et al . Solubility modeling and solvent effects of allopurinol in 15 neat solvents[J]. Journal of Chemical & Engineering Data, 2018, 63(9): 3551-3558. |
13 | Docherty R , Pencheva K , Abramov Y A . Low solubility in drug development: de-convoluting the relative importance of solvation and crystal packing[J]. Journal of Pharmacy & Pharmacology, 2015, 67(6): 847-856. |
14 | Fayjunessa R , Sarkar M R , Sultana R , et al . Study on dissolution improvement of allopurinol by co-grinding and fusion method using solid dispersion technique[J]. J. Biomed. Pharmaceut. Res., 2013, 2: 1-7. |
15 | Healy A M , Worku Z A , Kumar D , et al . Pharmaceutical solvates, hydrates and amorphous forms[J]. Advanced Drug Delivery Reviews, 2017, 117(1): 25-46. |
16 | Neglur R , Hosten E , Aucamp M , et al . Water and the relationship to the crystal structure stability of azithromycin[J]. Journal of Thermal Analysis & Calorimetry, 2018, 132(1): 373-384. |
17 | Carta R . Solubilities of L-cystine, L-tyrosine, L-leucine, and glycine in sodium chloride solutions at various pH values[J]. Journal of Chemical Thermodynamics, 1998, 30(3): 379-387. |
18 | Hazi M T , Lenka M , Sarkar D . Nucleation kinetics from metastable zone widths for sonocrystallization of L-phenylalanine[J]. Ultrasonics Sonochemistry, 2017, 36: 497-506. |
19 | Imran S , Hossain A , Mahali K , et al . Role of solubility and solvation thermodynamics on the stability of L-phenylalanine in aqueous methanol and ethanol solutions[J]. Journal of Molecular Liquids, 2018, 265(1): 693-700. |
20 | Zhang Y Z , Guo X , Tang P , et al . Solubility of 2,5-furandicarboxylic acid in eight pure solvents and two binary solvent systems at 313.15—363.15 K[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1316-1324. |
21 | Wang Z , Li Y , Fang W , et al . Salting effects on the solubility and transformation kinetics of L-phenylalanine anhydrate/monohydrate in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2012, 53(2): 521-529. |
22 | Zhou X , Fan J , Li N , et al . Solubility of L-phenylalanine in water and different binary mixtures from 288.15 to 318.15 K[J]. Fluid Phase Equilibria, 2012, 316(8): 26-33. |
23 | 赵宏宇, 顾正彪, 程力, 等 . 莱鲍迪苷A在甲醇-水体系中溶解度与超溶解度的测定[J]. 食品工业科技, 2012, 33(11): 340-342. |
Zhao H Y , Gu Z B , Cheng L , et al . Determination of solubility and supersolubility of rebaudioside A in methanol aqueous solution[J]. Science and Technology of Food Industry, 2012, 33(11): 340-342. | |
24 | Baluja S , Alnayab E A M , Hirapara A . Solubility and solution thermodynamics of hippuric acid in various solvents from 298.15 K to 328.15 K[J]. Journal of Molecular Liquids, 2017, 238: 84-88. |
25 | Chen L Z , Song L , Lan G C , et al . Solubility and metastable zone width measurement of 3,4-bis(3-nitrofurazan-4-yl) furoxan (DNTF) in ethanol + water[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 646-651. |
26 | Buchowski H , Ksiazczak A , Pietrzyk S . ChemInform abstract: solvent activity along a saturation line and solubility of hydrogen-bonding solids [J]. Journal of Physical Chemistry, 1980, 84(9): 975-979. |
27 | Su J , Chao Q , Luo N , et al . Experimental measurement and modeling of the solubility of biotin in six pure solvents at temperatures from 298.15 K to 333.85 K[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3894-3899. |
28 | Xie Y , Shi H W , Du C B , et al . Solubility determination and modeling for 4,4 -dihydroxydiphenyl sulfone in mixed solvents of (acetone, ethyl acetate, or acetonitrile)+ methanol and acetone + ethanol from (278.15 to 313.15) K[J]. Journal of Chemical & Engineering Data, 2016, 61(10): 3519-3526. |
29 | Wilson G M . Vapor-liquid equilibrium(Ⅺ). A new expression for the excess free energy of mixing[J]. J. Am. Chem. Soc., 1964, 86(2): 127-130. |
30 | Cravo F M , Bessa L C B A , Abreu C R A , et al . Liquid-liquid equilibrium of systems containing triolein + (fatty acid/ partial acylglycerols/ester) + ethanol: experimental data and UNIFAC modeling[J]. Fluid Phase Equilibria, 2018, 476(B): 186-192. |
31 | Wang L , Feng H , Peng J , et al . Solubility, metastable zone width, and nucleation kinetics of sodium dichromate dihydrate[J]. Journal of Chemical & Engineering Data, 2015, 60(1): 185-191. |
32 | Belgacem Z B , Dousset X , Prévost H , et al . Polyphasic taxonomic studies of lactic acid bacteria associated with tunisian fermented meat based on the heterogeneity of the 16S-23S rRNA gene intergenic spacer region[J]. Archives of Microbiology, 2009, 191(9): 711-720. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[3] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[4] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[5] | Yuxin REN, Runfeng XU, Wanying WANG, Pengzhong CHEN, Xiaojun PENG. Synthesis and stability study of anthraquinone dyes for color photoresist [J]. CIESC Journal, 2022, 73(5): 2251-2261. |
[6] |
Siying REN, Xudong YU, Jun LUO, Xia FENG, Zhixing ZHAO, Zhihao YAO.
Phase equilibria of aqueous quaternary system Li+, K+, |
[7] | Xueping ZHANG, Ruizhi CUI, Shihua SANG. Experiment and calculation of phase equilibrium in ternary systems NaBr-CaBr2-H2O and KBr-CaBr2-H2O at 273.15 K [J]. CIESC Journal, 2021, 72(9): 4479-4486. |
[8] | Shengzheng GUO, Songgu WU, Xin SU, Wei GAO, Zhiping NIU, Junbo GONG. Determination of solubility and metastable zone width of rebaudioside A and study on its crystallization process [J]. CIESC Journal, 2021, 72(8): 3997-4008. |
[9] | LUO Jun, WANG Lin, HUANG Qin, REN Siying, YU Xudong, ZENG Ying. Phase equilibria for ternary system CsCl-PEG8000-H2O at 288.2, 298.2 and 308.2 K [J]. CIESC Journal, 2021, 72(6): 3140-3148. |
[10] | LI Dan, SUN Shuaiqi, ZHANG Tao, ZHAO Yihui, MENG Lingzong, GUO Yafei, DENG Tianlong. Pitzer thermodynamic model of the system HCl-NaCl-CaCl2-H3BO3-H2O at 298.15 K and its application [J]. CIESC Journal, 2021, 72(6): 3160-3169. |
[11] | HUANG Qin, YU Xudong, LI Maolan, ZHENG Hong, ZENG Ying. Experimental and thermodynamic simulation for ternary systems KCl+PEG10000/20000+ H2O at 308.2 K [J]. CIESC Journal, 2021, 72(4): 1895-1905. |
[12] | Daqun CAO,Yan JIN,Hang CHEN,Jianguo YU. Phase equilibria determination and solubility calculation of the quaternary system CaCl2-SrCl2-BaCl2-H2O at 338.15 K [J]. CIESC Journal, 2021, 72(10): 5028-5039. |
[13] | Yi GAO, Yahui CAO, Jieping FAN. Study on crystallization separation of ursolic acid and oleanolic acid in ionic liquid [J]. CIESC Journal, 2020, 71(8): 3633-3643. |
[14] | Ying ZENG, Peijun CHEN, Xudong YU. Phase equilibria for quaternary system Rb+, Cs+, Mg2+ // SO42- - H2O at 298.2 K [J]. CIESC Journal, 2020, 71(8): 3460-3468. |
[15] | Yuhao LIU, Ying XU, Tao ZHANG, Qinghua FENG, Fengfeng QI. Effect of releasing dissolved gas from water though decompression on flow stability of water facility [J]. CIESC Journal, 2020, 71(5): 2069-2075. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 682
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 870
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||