CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1245-1254.DOI: 10.11949/j.issn.0438-1157.20181271
• Thermodynamics • Previous Articles Next Articles
Wanqiang LIU1,2,3(),Haixia LU1,Fengping LIU1,2,3,Guanfan CHEN1,2,3,Tian HU1,Ming YUE1,2,3,Minghua QIU1,2,3(
)
Received:
2018-10-29
Revised:
2018-12-24
Online:
2019-04-05
Published:
2019-04-05
Contact:
Minghua QIU
刘万强1,2,3(),陆海霞1,刘凤萍1,2,3,陈冠凡1,2,3,胡田1,岳明1,2,3,仇明华1,2,3(
)
通讯作者:
仇明华
作者简介:
<named-content content-type="corresp-name">刘万强</named-content>(1972—),男,博士,副教授,<email>wanqiangliu@hnust.edu.cn</email>|仇明华(1958—),男,教授,<email>mhqiu@hnust.edu.cn</email>
基金资助:
CLC Number:
Wanqiang LIU, Haixia LU, Fengping LIU, Guanfan CHEN, Tian HU, Ming YUE, Minghua QIU. Estimation of thermal conductivity of liquid alcohols using finite element solution based on principle of minimum potential energy[J]. CIESC Journal, 2019, 70(4): 1245-1254.
刘万强, 陆海霞, 刘凤萍, 陈冠凡, 胡田, 岳明, 仇明华. 应用势能极小原理有限元解法的一元醇液体热导率估算[J]. 化工学报, 2019, 70(4): 1245-1254.
Center number | Atomic type | Coordinate/? | ||
---|---|---|---|---|
x | y | z | ||
1 | C | ?1.3175 | ?0.5703 | ?0.0906 |
2 | C | ?0.0015 | 0.0269 | 0.3712 |
3 | C | 1.2114 | ?0.7640 | ?0.1046 |
4 | O | 0.0282 | 1.3656 | ?0.1646 |
Table 1 Standard orientation coordinates of heavy atoms in isopropanol molecule
Center number | Atomic type | Coordinate/? | ||
---|---|---|---|---|
x | y | z | ||
1 | C | ?1.3175 | ?0.5703 | ?0.0906 |
2 | C | ?0.0015 | 0.0269 | 0.3712 |
3 | C | 1.2114 | ?0.7640 | ?0.1046 |
4 | O | 0.0282 | 1.3656 | ?0.1646 |
Center number | Atomic type | Mulliken charge |
---|---|---|
1 | C | 0.05463 |
2 | C | 0.292 |
3 | C | 0.01081 |
4 | O | ?0.35745 |
Table 2 Mulliken charges with hydrogens summed into heavy atoms in isopropanol molecule
Center number | Atomic type | Mulliken charge |
---|---|---|
1 | C | 0.05463 |
2 | C | 0.292 |
3 | C | 0.01081 |
4 | O | ?0.35745 |
Types | Elasticity coefficients | |||||
---|---|---|---|---|---|---|
E | G | A | Ix | Iy | J | |
C—C | 0.8322 | 0.3329 | 3.1416 | 0.7854 | 0.7854 | 1.5708 |
C—O | 0.8613 | 0.2871 | 2.7087 | 0.5839 | 0.5839 | 1.1678 |
Table 3 Elasticity coefficients of chemical bond space frame elements in alcohol molecules
Types | Elasticity coefficients | |||||
---|---|---|---|---|---|---|
E | G | A | Ix | Iy | J | |
C—C | 0.8322 | 0.3329 | 3.1416 | 0.7854 | 0.7854 | 1.5708 |
C—O | 0.8613 | 0.2871 | 2.7087 | 0.5839 | 0.5839 | 1.1678 |
No. | Compound | Q e | No. | Compound | Q e |
---|---|---|---|---|---|
1 | methanol | 0.0167 | 13 | n-octadecanol | 0.0474 |
2 | ethanol | 0.0311 | 14 | 2-hexanol | 0.0651 |
3 | n-proanol | 0.0488 | 15 | isoproanol | 0.0556 |
4 | n-butanol | 0.0322 | 16 | isobutanol | 0.0443 |
5 | n-pentanol | 0.0480 | 17 | 2-methyl-2-propanol | 0.0554 |
6 | n-hexanol | 0.0320 | 18 | 3-methyl-1-butanol | 0.0484 |
7 | n-heptanol | 0.0477 | 19 | 2-methyl-2-butanol | 0.0684 |
8 | n-octanol | 0.0474 | 20 | isoheptanol | 0.0477 |
9 | n-nonanol | 0.0318 | 21 | phytol | 0.0455 |
10 | n-decanol | 0.0319 | 22 | cyclohexanol | 0.0590 |
11 | n-undecylalcohol | 0.0475 | 23 | benzyl alcohol | 0.0465 |
12 | n-dodecanol | 0.0319 |
Table 4 Calculated values of charge parameter of monohydric alcohols
No. | Compound | Q e | No. | Compound | Q e |
---|---|---|---|---|---|
1 | methanol | 0.0167 | 13 | n-octadecanol | 0.0474 |
2 | ethanol | 0.0311 | 14 | 2-hexanol | 0.0651 |
3 | n-proanol | 0.0488 | 15 | isoproanol | 0.0556 |
4 | n-butanol | 0.0322 | 16 | isobutanol | 0.0443 |
5 | n-pentanol | 0.0480 | 17 | 2-methyl-2-propanol | 0.0554 |
6 | n-hexanol | 0.0320 | 18 | 3-methyl-1-butanol | 0.0484 |
7 | n-heptanol | 0.0477 | 19 | 2-methyl-2-butanol | 0.0684 |
8 | n-octanol | 0.0474 | 20 | isoheptanol | 0.0477 |
9 | n-nonanol | 0.0318 | 21 | phytol | 0.0455 |
10 | n-decanol | 0.0319 | 22 | cyclohexanol | 0.0590 |
11 | n-undecylalcohol | 0.0475 | 23 | benzyl alcohol | 0.0465 |
12 | n-dodecanol | 0.0319 |
No. | Compound | ω 0 | | No. | Compound | ω 0 | |
---|---|---|---|---|---|---|---|
1 | methanol | 0.0167 | 2.2879 | 13 | n-octadecanol | 0.0474 | 43.3410 |
2 | ethanol | 0.0311 | 4.7659 | 14 | 2-hexanol | 0.0651 | 14.4188 |
3 | n-proanol | 0.0488 | 7.1973 | 15 | isoproanol | 0.0556 | 7.1875 |
4 | n-butanol | 0.0322 | 9.6188 | 16 | isobutanol | 0.0443 | 9.5870 |
5 | n-pentanol | 0.0480 | 12.0349 | 17 | 2-methoxy-2-propanol | 0.0554 | 9.4219 |
6 | n-hexanol | 0.0320 | 14.4466 | 18 | 3-methoxy-1-butanol | 0.0484 | 11.5553 |
7 | n-heptanol | 0.0477 | 16.8574 | 19 | 2-methoxy-2-butanol | 0.0684 | 11.9710 |
8 | n-octanol | 0.0474 | 19.2668 | 20 | isoheptanol | 0.0477 | 16.8190 |
9 | n-nonanol | 0.0318 | 21.7656 | 21 | phytol | 0.0455 | 48.6498 |
10 | n-decanol | 0.0319 | 24.0841 | 22 | cyclohexanol | 0.0590 | 16.3980 |
11 | n-undecylalcohol | 0.0475 | 26.4919 | 23 | benzyl alcohol | 0.0465 | 24.1498 |
12 | n-dodecanol | 0.0319 | 28.8955 |
Table 5 Values of basic frequency and sum-frequency from natural frequencies of molecular structures
No. | Compound | ω 0 | | No. | Compound | ω 0 | |
---|---|---|---|---|---|---|---|
1 | methanol | 0.0167 | 2.2879 | 13 | n-octadecanol | 0.0474 | 43.3410 |
2 | ethanol | 0.0311 | 4.7659 | 14 | 2-hexanol | 0.0651 | 14.4188 |
3 | n-proanol | 0.0488 | 7.1973 | 15 | isoproanol | 0.0556 | 7.1875 |
4 | n-butanol | 0.0322 | 9.6188 | 16 | isobutanol | 0.0443 | 9.5870 |
5 | n-pentanol | 0.0480 | 12.0349 | 17 | 2-methoxy-2-propanol | 0.0554 | 9.4219 |
6 | n-hexanol | 0.0320 | 14.4466 | 18 | 3-methoxy-1-butanol | 0.0484 | 11.5553 |
7 | n-heptanol | 0.0477 | 16.8574 | 19 | 2-methoxy-2-butanol | 0.0684 | 11.9710 |
8 | n-octanol | 0.0474 | 19.2668 | 20 | isoheptanol | 0.0477 | 16.8190 |
9 | n-nonanol | 0.0318 | 21.7656 | 21 | phytol | 0.0455 | 48.6498 |
10 | n-decanol | 0.0319 | 24.0841 | 22 | cyclohexanol | 0.0590 | 16.3980 |
11 | n-undecylalcohol | 0.0475 | 26.4919 | 23 | benzyl alcohol | 0.0465 | 24.1498 |
12 | n-dodecanol | 0.0319 | 28.8955 |
No. | Compound | m | m-1 | No. | Compound | m | m-1 |
---|---|---|---|---|---|---|---|
1 | methanol | 1.26 | 0.26 | 13 | n-octadecanol | 0.97 | ?0.03 |
2 | ethanol | 1.06 | 0.06 | 14 | 2-hexanol | 1.02 | 0.02 |
3 | n-proanol | 1.14 | 0.14 | 15 | isoproanol | 1.01 | 0.01 |
4 | n-butanol | 1.04 | 0.04 | 16 | isobutanol | 0.96 | ?0.04 |
5 | n-pentanol | 1.07 | 0.07 | 17 | 2-methoxy-2-propanol | 0.95 | ?0.05 |
6 | n-hexanol | 1.02 | 0.02 | 18 | 3-methoxy-1-butanol | 0.97 | ?0.03 |
7 | n-heptanol | 1.06 | 0.06 | 19 | 2-methoxy-2-butanol | 0.95 | ?0.05 |
8 | n-octanol | 1.05 | 0.05 | 20 | isoheptanol | 0.98 | ?0.02 |
9 | n-nonanol | 1.02 | 0.02 | 21 | phytol | 0.99 | ?0.01 |
10 | n-decanol | 1.04 | 0.04 | 22 | cyclohexanol | 0.95 | ?0.05 |
11 | n-undecylalcohol | 1.08 | 0.08 | 23 | benzyl alcohol | 1.03 | 0.03 |
12 | n-dodecanol | 1.05 | 0.05 |
Table 6 Average optimum values of charge parameter E to power exponent m in temperature range
No. | Compound | m | m-1 | No. | Compound | m | m-1 |
---|---|---|---|---|---|---|---|
1 | methanol | 1.26 | 0.26 | 13 | n-octadecanol | 0.97 | ?0.03 |
2 | ethanol | 1.06 | 0.06 | 14 | 2-hexanol | 1.02 | 0.02 |
3 | n-proanol | 1.14 | 0.14 | 15 | isoproanol | 1.01 | 0.01 |
4 | n-butanol | 1.04 | 0.04 | 16 | isobutanol | 0.96 | ?0.04 |
5 | n-pentanol | 1.07 | 0.07 | 17 | 2-methoxy-2-propanol | 0.95 | ?0.05 |
6 | n-hexanol | 1.02 | 0.02 | 18 | 3-methoxy-1-butanol | 0.97 | ?0.03 |
7 | n-heptanol | 1.06 | 0.06 | 19 | 2-methoxy-2-butanol | 0.95 | ?0.05 |
8 | n-octanol | 1.05 | 0.05 | 20 | isoheptanol | 0.98 | ?0.02 |
9 | n-nonanol | 1.02 | 0.02 | 21 | phytol | 0.99 | ?0.01 |
10 | n-decanol | 1.04 | 0.04 | 22 | cyclohexanol | 0.95 | ?0.05 |
11 | n-undecylalcohol | 1.08 | 0.08 | 23 | benzyl alcohol | 1.03 | 0.03 |
12 | n-dodecanol | 1.05 | 0.05 |
No. | Compound | n | (m-1)calc | m calc | No. | Compound | n | (m-1)calc | m calc |
---|---|---|---|---|---|---|---|---|---|
1 | methanol | 1 | 0.26 | 1.26 | 7 | n-heptanol | 7 | 0.04 | 1.04 |
2 | ethanol | 2 | 0.06 | 1.06 | 8 | n-octanol | 8 | 0.05 | 1.05 |
3 | n-proanol | 3 | 0.14 | 1.14 | 9 | n-nonanol | 9 | 0.02 | 1.02 |
4 | n-butanol | 4 | 0.03 | 1.03 | 10 | n-decanol | 10 | 0.04 | 1.04 |
5 | n-pentanol | 5 | 0.07 | 1.07 | 11 | n-dodecanol | 12 | 0.05 | 1.05 |
6 | n-hexanol | 6 | 0.03 | 1.03 | 12 | n-octadecanol | 18 | -0.03 | 0.97 |
Table 7 Calculated values of charge parameter E to power exponent m
No. | Compound | n | (m-1)calc | m calc | No. | Compound | n | (m-1)calc | m calc |
---|---|---|---|---|---|---|---|---|---|
1 | methanol | 1 | 0.26 | 1.26 | 7 | n-heptanol | 7 | 0.04 | 1.04 |
2 | ethanol | 2 | 0.06 | 1.06 | 8 | n-octanol | 8 | 0.05 | 1.05 |
3 | n-proanol | 3 | 0.14 | 1.14 | 9 | n-nonanol | 9 | 0.02 | 1.02 |
4 | n-butanol | 4 | 0.03 | 1.03 | 10 | n-decanol | 10 | 0.04 | 1.04 |
5 | n-pentanol | 5 | 0.07 | 1.07 | 11 | n-dodecanol | 12 | 0.05 | 1.05 |
6 | n-hexanol | 6 | 0.03 | 1.03 | 12 | n-octadecanol | 18 | -0.03 | 0.97 |
Group number | Isoproanol | Isobutanol | 2-Methoxy-2-propanol | 3-Methoxy -1-butanol | 2-Methoxy-2-butanol | Isoheptanol | Phytol | Cyclohexanol | Benzyl alcohol |
---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 3 | 2 | 3 | 2 | 5 | 0 | 0 |
| 0 | 1 | 0 | 2 | 1 | 4 | 10 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 4 | 0 | 0 |
n O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
n BO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
n H | 1 | 2 | 0 | 2 | 0 | 2 | 2 | 1 | 2 |
m?1 | 0.01 | ?0.04 | ?0.05 | ?0.03 | ?0.05 | ?0.02 | ?0.01 | ?0.05 | 0.04 |
Table 8 Characteristic group number and calculated values of power exponent m in no straight molecular structure
Group number | Isoproanol | Isobutanol | 2-Methoxy-2-propanol | 3-Methoxy -1-butanol | 2-Methoxy-2-butanol | Isoheptanol | Phytol | Cyclohexanol | Benzyl alcohol |
---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 3 | 2 | 3 | 2 | 5 | 0 | 0 |
| 0 | 1 | 0 | 2 | 1 | 4 | 10 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 4 | 0 | 0 |
n O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
n BO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
n H | 1 | 2 | 0 | 2 | 0 | 2 | 2 | 1 | 2 |
m?1 | 0.01 | ?0.04 | ?0.05 | ?0.03 | ?0.05 | ?0.02 | ?0.01 | ?0.05 | 0.04 |
No. | Compound | Temperature range/K | n | ω 0 | | | MAD×103 /(W/(m·K)) | MRD/% |
---|---|---|---|---|---|---|---|---|
1 | methanol | 290—320 | 3 | 0.1712 | 0.0382 | 0.01671.30 T | 4.35 | 2.14 |
2 | ethanol | 290—340 | 4 | 0.1248 | 0.1482 | 0.03111.06 T | 3.25 | 2.02 |
3 | n-proanol | 273—353 | 5 | 0.0964 | 0.3512 | 0.04881.15 T | 1.98 | 1.31 |
4 | n-butanol | 193—380 | 24 | 0.0762 | 0.3097 | 0.03220.99 T | 3.52 | 2.46 |
5 | n-pentanol | 290—400 | 7 | 0.0585 | 0.5777 | 0.04801.08 T | 1.67 | 1.21 |
6 | n-hexanol | 240—420 | 10 | 0.0470 | 0.4623 | 0.03201.02 T | 3.77 | 2.68 |
7 | n-heptanol | 250—480 | 13 | 0.0374 | 0.8041 | 0.04771.04 T | 3.25 | 2.24 |
8 | n-octanol | 280—520 | 13 | 0.0310 | 0.9132 | 0.04741.05 T | 3.21 | 2.48 |
9 | n-nonanol | 280—460 | 10 | 0.0255 | 0.6921 | 0.03181.02 T | 4.34 | 3.12 |
10 | n-decanol | 290—423 | 14 | 0.0184 | 0.7683 | 0.03191.04 T | 3.04 | 2.05 |
11 | n-undecylalcohol | 300—440 | 8 | 0.0184 | 1.2584 | 0.04751.09 T | 1.72 | 1.10 |
12 | n-dodecanol | 310—440 | 8 | 0.0159 | 0.9215 | 0.03191.05 T | 3.10 | 2.07 |
13 | n-octadecanol | 337—440 | 15 | 0.0077 | 2.0544 | 0.04740.97 T | 1.61 | 0.93 |
14 | 2-hexanol | 200—370 | 10 | 0.0517 | 0.9387 | 0.06511.02 T | 3.91 | 2.87 |
15 | isoproanol | 190—470 | 21 | 0.1192 | 0.3996 | 0.05561.01 T | 2.68 | 2.12 |
16 | isobutanol | 290—470 | 22 | 0.0825 | 0.4247 | 0.04430.96 T | 3.85 | 3.75 |
17 | 2-methoxy-2-propanol | 310—400 | 9 | 0.0834 | 0.5220 | 0.05540.95 T | 4.70 | 4.34 |
18 | 3-methoxy-1-butanol | 160—400 | 13 | 0.0616 | 0.5593 | 0.04840.97 T | 4.63 | 3.47 |
19 | 2-methoxy-2-butanol | 280—360 | 6 | 0.0792 | 0.7793 | 0.03111.06 T | 4.40 | 3.88 |
20 | isoheptanol | 230—430 | 21 | 0.0412 | 0.8023 | 0.04770.98 T | 2.96 | 2.27 |
21 | phytol | 250—310 | 7 | 0.0084 | 2.2136 | 0.04550.99 T | 1.58 | 0.78 |
22 | cyclohexanol | 300—360 | 7 | 0.0942 | 0.9675 | 0.05900.95 T | 1.76 | 1.32 |
23 | benzyl alcohol | 290—420 | 14 | 0.0698 | 0.9370 | 0.04651.04 T | 3.16 | 2.03 |
Table 9 Temperature range, parameter, mean absolute deviation and relative deviation between experiment[4] and calculated values
No. | Compound | Temperature range/K | n | ω 0 | | | MAD×103 /(W/(m·K)) | MRD/% |
---|---|---|---|---|---|---|---|---|
1 | methanol | 290—320 | 3 | 0.1712 | 0.0382 | 0.01671.30 T | 4.35 | 2.14 |
2 | ethanol | 290—340 | 4 | 0.1248 | 0.1482 | 0.03111.06 T | 3.25 | 2.02 |
3 | n-proanol | 273—353 | 5 | 0.0964 | 0.3512 | 0.04881.15 T | 1.98 | 1.31 |
4 | n-butanol | 193—380 | 24 | 0.0762 | 0.3097 | 0.03220.99 T | 3.52 | 2.46 |
5 | n-pentanol | 290—400 | 7 | 0.0585 | 0.5777 | 0.04801.08 T | 1.67 | 1.21 |
6 | n-hexanol | 240—420 | 10 | 0.0470 | 0.4623 | 0.03201.02 T | 3.77 | 2.68 |
7 | n-heptanol | 250—480 | 13 | 0.0374 | 0.8041 | 0.04771.04 T | 3.25 | 2.24 |
8 | n-octanol | 280—520 | 13 | 0.0310 | 0.9132 | 0.04741.05 T | 3.21 | 2.48 |
9 | n-nonanol | 280—460 | 10 | 0.0255 | 0.6921 | 0.03181.02 T | 4.34 | 3.12 |
10 | n-decanol | 290—423 | 14 | 0.0184 | 0.7683 | 0.03191.04 T | 3.04 | 2.05 |
11 | n-undecylalcohol | 300—440 | 8 | 0.0184 | 1.2584 | 0.04751.09 T | 1.72 | 1.10 |
12 | n-dodecanol | 310—440 | 8 | 0.0159 | 0.9215 | 0.03191.05 T | 3.10 | 2.07 |
13 | n-octadecanol | 337—440 | 15 | 0.0077 | 2.0544 | 0.04740.97 T | 1.61 | 0.93 |
14 | 2-hexanol | 200—370 | 10 | 0.0517 | 0.9387 | 0.06511.02 T | 3.91 | 2.87 |
15 | isoproanol | 190—470 | 21 | 0.1192 | 0.3996 | 0.05561.01 T | 2.68 | 2.12 |
16 | isobutanol | 290—470 | 22 | 0.0825 | 0.4247 | 0.04430.96 T | 3.85 | 3.75 |
17 | 2-methoxy-2-propanol | 310—400 | 9 | 0.0834 | 0.5220 | 0.05540.95 T | 4.70 | 4.34 |
18 | 3-methoxy-1-butanol | 160—400 | 13 | 0.0616 | 0.5593 | 0.04840.97 T | 4.63 | 3.47 |
19 | 2-methoxy-2-butanol | 280—360 | 6 | 0.0792 | 0.7793 | 0.03111.06 T | 4.40 | 3.88 |
20 | isoheptanol | 230—430 | 21 | 0.0412 | 0.8023 | 0.04770.98 T | 2.96 | 2.27 |
21 | phytol | 250—310 | 7 | 0.0084 | 2.2136 | 0.04550.99 T | 1.58 | 0.78 |
22 | cyclohexanol | 300—360 | 7 | 0.0942 | 0.9675 | 0.05900.95 T | 1.76 | 1.32 |
23 | benzyl alcohol | 290—420 | 14 | 0.0698 | 0.9370 | 0.04651.04 T | 3.16 | 2.03 |
Compound | T/K | λ/(mW/(m·K)) | ω 0 | | TQ e m | Δ/% | ||
---|---|---|---|---|---|---|---|---|
This work | Sastri[ | Latini[ | ||||||
tert-heptanol | 310 | 139 | 0.0483 | 1.3046 | 22.3098 | ?1.13 | — | — |
320 | 136 | 0.0483 | 1.306 | 23.0295 | ?1.25 | — | — | |
330 | 133 | 0.0483 | 1.3046 | 23.7491 | ?0.92 | — | — | |
340 | 130 | 0.0483 | 1.3046 | 24.4688 | ?0.46 | — | — | |
2-octanol | 300 | 138 | 0.0324 | 1.0050 | 16.6126 | 1.74 | 20.76 | 0.10 |
320 | 135 | 0.0324 | 1.0050 | 17.7201 | 0.95 | 25.30 | ?1.12 | |
340 | 132 | 0.0324 | 1.0050 | 18.8276 | 0.12 | 30.53 | ?2.37 | |
360 | 129 | 0.0324 | 1.0050 | 19.9352 | ?0.74 | 36.67 | ?3.67 | |
n-tetradecanol | 340 | 166 | 0.0039 | 0.5680 | 4.0452 | ?4.23 | ?12.37 | ?22.37 |
350 | 164 | 0.0039 | 0.5680 | 4.1642 | ?3.33 | ?10.31 | ?22.82 | |
360 | 163 | 0.0039 | 0.5680 | 4.2832 | ?3.01 | ?8.60 | ?23.76 | |
370 | 161 | 0.0039 | 0.5680 | 4.4021 | ?2.08 | ?6.13 | ?24.25 | |
380 | 160 | 0.0039 | 0.5680 | 4.5211 | ?1.74 | ?3.97 | ?25.22 | |
390 | 158 | 0.0039 | 0.5680 | 4.6401 | ?0.78 | ?0.87 | ?25.75 | |
400 | 156 | 0.0039 | 0.5680 | 4.7591 | 0.21 | 2.69 | ?26.30 | |
410 | 154 | 0.0039 | 0.5680 | 4.8780 | 1.23 | 6.85 | ?26.88 | |
420 | 153 | 0.0039 | 0.5680 | 4.9970 | 1.60 | ?24.81 | ?27.97 | |
430 | 151 | 0.0039 | 0.5680 | 5.1160 | 2.65 | ?23.97 | ?28.61 | |
440 | 150 | 0.0039 | 0.5680 | 5.2350 | 3.04 | ?23.63 | ?29.77 | |
450 | 148 | 0.0039 | 0.5680 | 5.3540 | 4.13 | ?22.76 | ?30.51 |
Table 10 Comparison of predicted values of liquid thermal conductivity of 3 alcohols compounds
Compound | T/K | λ/(mW/(m·K)) | ω 0 | | TQ e m | Δ/% | ||
---|---|---|---|---|---|---|---|---|
This work | Sastri[ | Latini[ | ||||||
tert-heptanol | 310 | 139 | 0.0483 | 1.3046 | 22.3098 | ?1.13 | — | — |
320 | 136 | 0.0483 | 1.306 | 23.0295 | ?1.25 | — | — | |
330 | 133 | 0.0483 | 1.3046 | 23.7491 | ?0.92 | — | — | |
340 | 130 | 0.0483 | 1.3046 | 24.4688 | ?0.46 | — | — | |
2-octanol | 300 | 138 | 0.0324 | 1.0050 | 16.6126 | 1.74 | 20.76 | 0.10 |
320 | 135 | 0.0324 | 1.0050 | 17.7201 | 0.95 | 25.30 | ?1.12 | |
340 | 132 | 0.0324 | 1.0050 | 18.8276 | 0.12 | 30.53 | ?2.37 | |
360 | 129 | 0.0324 | 1.0050 | 19.9352 | ?0.74 | 36.67 | ?3.67 | |
n-tetradecanol | 340 | 166 | 0.0039 | 0.5680 | 4.0452 | ?4.23 | ?12.37 | ?22.37 |
350 | 164 | 0.0039 | 0.5680 | 4.1642 | ?3.33 | ?10.31 | ?22.82 | |
360 | 163 | 0.0039 | 0.5680 | 4.2832 | ?3.01 | ?8.60 | ?23.76 | |
370 | 161 | 0.0039 | 0.5680 | 4.4021 | ?2.08 | ?6.13 | ?24.25 | |
380 | 160 | 0.0039 | 0.5680 | 4.5211 | ?1.74 | ?3.97 | ?25.22 | |
390 | 158 | 0.0039 | 0.5680 | 4.6401 | ?0.78 | ?0.87 | ?25.75 | |
400 | 156 | 0.0039 | 0.5680 | 4.7591 | 0.21 | 2.69 | ?26.30 | |
410 | 154 | 0.0039 | 0.5680 | 4.8780 | 1.23 | 6.85 | ?26.88 | |
420 | 153 | 0.0039 | 0.5680 | 4.9970 | 1.60 | ?24.81 | ?27.97 | |
430 | 151 | 0.0039 | 0.5680 | 5.1160 | 2.65 | ?23.97 | ?28.61 | |
440 | 150 | 0.0039 | 0.5680 | 5.2350 | 3.04 | ?23.63 | ?29.77 | |
450 | 148 | 0.0039 | 0.5680 | 5.3540 | 4.13 | ?22.76 | ?30.51 |
1 | Shearer E C . Physical properties of primary alcohols: an experience in physical chemistry[J]. J. Chem. Educ., 1974, 51(2): 140-148. |
2 | Mccullough B T . Analysis of alcohols[J]. J. Chem. Educ., 1984, 61(1): 68-76. |
3 | Jacobse L , Vink S O , Wijngaarden S , et al . Heterogeneous catalytic oxidation of simple alcohols by transition metals[J]. J. Chem. Educ., 2017, 94(9): 1285-1287. |
4 | Vargaftik N B . Handbook of Thermal Conductivity of Liquids and Gases[M]. Boca Raton FL: CRC Press, 1994: 358. |
5 | Lide D R . CRC Handbook of Chemistry and Physics[M]. Boca Raton FL: CRC Press, 2010: 2766. |
6 | Gharagheizi F , Eslamimanesh A , Sattari M , et al . Evaluation of thermal conductivity of gases at atmospheric pressure through a corresponding states method[J]. Ind. Eng. Chem. Res., 2012, 51(9): 3844-3849. |
7 | Baroncini C , Filippo P , Latini G , et al . Organic liquid thermal conductivity: a prediction method in the reduced temperature range 0.3 to 0.8[J]. Int. J. Thermophys, 1981, 2(1): 21-38. |
8 | Klaas D M , Viswanath D S . A correlation for the prediction of thermal conductivity of liquids[J]. Ind. Eng. Chem. Res., 1998, 37(5): 2064-2068. |
9 | Rodenbush C M , Viswanath D S , Hsieh F . A group contribution method for the prediction of thermal conductivity of liquids and its application to the Prandtl number for vegetable oils[J]. Ind. Eng. Chem. Res., 1999, 38(11): 4513-4519. |
10 | Krauss R , Stephan K . Thermal conductivity of refrigerants in a wide range of temperature and pressure[J]. J. Phys. Chem. Ref. Data, 1989, 18(1): 43-76. |
11 | Müller K , Arlt W . An estimation method for thermal conductivity in the fluid phase[J]. J. Chem. Eng. Data, 2014, 59(4): 946–953. |
12 | 张玉英, 张克武 . 分子热力学性质手册——计算方法与最新实验数据[M]. 北京: 化学工业出版社, 2009: 205-238. |
Zhang Y Y , Zhang K W . Handbook for Thermodynamics Properties of Molecules: Calculation Method and Latest Experimental Data[M]. Beijing: Chemical Industry Press, 2009: 205-238. | |
13 | 马沛生 . 有机化合物实验物性数据手册——含碳、氢、氧、卤部分[M]. 北京: 化学工业出版社, 2006: 594-600. |
Ma P S . Handbook for Exprimental Properties Data of Organic Compounds: Section of Carbon, Hydrogen, Oxygen and Halogens[M]. Beijing: Chemical Industry Press, 2006: 594-600. | |
14 | Poling B E , Prausnitz J M , Oconnell J P . The Properties of Gases and Liquids[M]. Boston: McGraw-Hill Companies Inc., 2001: 594-600. |
15 | França J M P , Lourenço M J V , Murshed S M S , et al . Thermal conductivity of ionic liquids and ionanofluids and their feasibility as heat transfer fluids[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6516-6529. |
16 | Liu W Q , Lu H X , Cao C Z , et al . An improved quantitative structure property relationship model for predicting thermal conductivity of liquid aliphatic alcohols[J]. J.Chem. Eng. Data, 2018, 63(12): 4735–4740. |
17 | França J M P , Lourenço M J V , Murshed S M S , et al . Thermal conductivity of ionic liquids and ionanofluids and their feasibility as heat transfer fluids[J]. Ind. Eng. Chem. Res., 2018, 57(18): 6516-6529. |
18 | Werner M , Baars A , Eder C , et al . Thermal conductivity and density of plant oils under high pressure[J]. Ind. Chem. Eng. Data, 2008, 53(7): 1444-1452. |
19 | 仇明华, 刘万强, 刘凤萍, 等 . 用分子结构有限元分析方法估算多类芳烃的液体热导率[J]. 过程工程学报, 2018, 18(1): 196-201. |
Qiu M H , Liu W Q , Liu F P , et al . Estimation of thermal conductivity of liquid aromatic hydrocarbons using finite element analysis method in molecular structure[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 196-201. | |
20 | 仇明华, 刘万强, 岳明, 等 . 分子结构力学有限元分析方法估算多元醇液体热导率[J]. 分子科学学报, 2018, 34(1): 1-8. |
Qiu M H , Liu W Q , Yue M , et al . Estimation of thermal conductivity of Polyols in liquid using finite element analysis in molecular structural mechanics[J]. Journal of Molecular Science, 2018, 34(1): 1-8. | |
21 | 仇明华, 刘万强, 陈冠凡, 等 . 用振动力学有限元分析方法估算多类烃的液体热导率[J]. 化工学报, 2016, 67(7): 2672-2678. |
Qiu M H , Liu W Q , Chen G F , et al . Conductivity estimates of liquid hydrocarbons by finite element analysis in vibration mechanics[J]. CIESC Journal, 2016, 67(7): 2672-2678. | |
22 | 仇明华, 谢文林, 刘凤萍, 等 . 一种磺酰胺类碳酸酐酶Ⅱ抑制剂3D-QSAR分析新方法[J]. 化学学报, 2010, 68(24): 2581-2589. |
Qiu M H , Xie W L , Liu F P , et al . A new method of 3D-QSAR anlysis for carbonic anhydrase Ⅱ inhibitors[J]. Acta Chimica Sinica, 2010, 68(24): 2581-2589. | |
23 | 赵经文, 王宏钰 . 结构有限元分析[M]. 北京: 科学出版社, 2002. |
Zhao J W , Wang H Y . Finite Element Analysis for Structures[M]. Beijing: Science Press, 2002. | |
24 | 周昌玉, 贺小华 . 有限元分析的基本方法及工程应用[M]. 北京: 化学工业出版社, 2006. |
Zhou C Y , He X H . Basic Method of Finite Element Analysis and Application in Engineering[M]. Beijing: Chemical Industry Press, 2006. | |
25 | 李时丰 . 原子参数与原子性质[M]. 长沙: 湖南科学出版社, 1982. |
Li S F . Atomic Parameter and Element Properties[M]. Changsha: Hunan Science Press, 1982. | |
26 | 林梦海 . 量子化学计算方法与应用[M]. 北京: 科学出版社, 2004. |
Lin M H . Quantum Chemistry Computing Method and Application[M]. Beijing: Science Press, 2004. | |
27 | Devendra M E A . The X—C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) “carbon bond” and hydrophobic interactions[J]. Physical Chemistry Chemical Physics: PCCP, 2013,15(34): 14377-14383. |
28 | Wang B , Yi H , Xu K , et al . Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models[J]. Journal of Thermal Analysis & Calorimetry, 2017,128(1): 399-406. |
29 | 刘延柱 . 弹性细杆的非线性力学——DNA力学模型的理论基础[M]. 北京: 清华大学出版社, 2006: 15-18. |
Liu Y Z . Nonlinear Mechanics of Thin Elastic Rod: Theoretical Basis of Mechanical Model of DNA[M]. Beijing: Tsinghua University Press, 2006: 15-18. | |
30 | Kattan P I . MATLAB Guide to Finite Elements[M]. Heidelberg: Springer-Verlag, 2003. |
31 | 方同, 薛璞 . 振动理论及应用[M]. 西安: 西北工业大学出版社, 2002: 99-125. |
Fang T , Xue P . Vibration Mechanics and Application[M]. Xi'an: NWPU Press, 2002: 99-125. |
[1] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[2] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[3] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[4] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[5] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[6] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[7] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[8] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[9] | Hailin JIA, Bo CUI, Nan CHEN, Yongqin YANG, Qingyin WANG, Fumin ZHU. Foam performance analysis of fluorine-free foam modified by low carbon alcohol and experimental study on extinguishing oil pool fire [J]. CIESC Journal, 2022, 73(9): 4235-4244. |
[10] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[11] | Jiahui REN, Yu LIU, Chao LIU, Lang LIU, Ying LI. Critical temperature prediction of working fluids using molecular fingerprints and topological indices [J]. CIESC Journal, 2022, 73(4): 1493-1500. |
[12] | Mingze SUN, Ning MA, Haoran LI, Haifeng JIANG, Wenpeng HONG, Xiaojuan NIU. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium [J]. CIESC Journal, 2022, 73(3): 1379-1388. |
[13] | Maolin YE, Fenghua TAN, Yuping LI, Yuhe LIAO, Chenguang WANG, Longlong MA. Life cycle environmental impact assessment of mixed alcohol via gasification of agricultural and forestry residues and catalytic synthesis [J]. CIESC Journal, 2022, 73(3): 1369-1378. |
[14] | Huaixu LI, Xiaoyan SUN, Shaohui TAO, Li XIA, Shuguang XIANG. Lumping gasoline with molecular properties and density peak clustering [J]. CIESC Journal, 2022, 73(12): 5449-5460. |
[15] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 294
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 527
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||