CIESC Journal ›› 2018, Vol. 69 ›› Issue (12): 4972-4978.DOI: 10.11949/j.issn.0438-1157.20180475
Previous Articles Next Articles
ZHOU Yunlong, GUO Xintian, ZHANG Wenchao, CHEN Xu
Received:
2018-05-07
Revised:
2018-07-09
Online:
2018-12-05
Published:
2018-12-05
Supported by:
supported by the National Natural Science Foundation of China(51541608, 51776033).
周云龙, 郭新田, 张文超, 陈旭
通讯作者:
郭新田
基金资助:
国家自然科学基金项目(51541608,51776033)。
CLC Number:
ZHOU Yunlong, GUO Xintian, ZHANG Wenchao, CHEN Xu. Experimental investigation on FDB starting point in three-side heating narrow rectangular channel[J]. CIESC Journal, 2018, 69(12): 4972-4978.
周云龙, 郭新田, 张文超, 陈旭. 三面加热窄矩形通道内饱和沸腾起始点的实验研究[J]. 化工学报, 2018, 69(12): 4972-4978.
[1] | AOKI S, INOUE A, ARITOMI M, et al. Experimental study on the boiling phenomena within a narrow gap[J]. International Journal of Heat and Mass Transfer, 1982, 25(7):985-990. |
[2] | RIBATSKI G, THOME J R. Two-phase flow and heat transfer across horizontal tube bundles-a review[J]. Heat Transfer Engineering, 2007, 28(6):508-524. |
[3] | HAN J L, SANG Y L. Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios[J]. International Journal of Multiphase Flow, 2001, 27(12):2043-2062. |
[4] | MIZUTANI Y, TOMIYAMA A, HOSOKAWAS, et al. Two-phase flow patterns in a four by four rod bundle[J]. Journal of Nuclear Science and Technology, 2007, 44(6):894-901. |
[5] | FUJITA Y, OHTA H, UCHIDA S, et al. Nucleate boiling heat transfer and critical heat flux in narrow space between rectangular surfaces[J]. International Journal of Heat & Mass Transfer, 1988, 31(2):229-239. |
[6] | HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3):207-213. |
[7] | 黄理浩, 陶乐仁, 郑志皋, 等. 垂直矩形窄通道内饱和沸腾起始点实验研究[J]. 工程热物理学报, 2014, 35(8):1629-1632. HUANG L H, TAO L Y, ZHENG Z G. et al. Experiment study for the FDB starting point of vertical rectangular narrow channels[J]. Journal of Engineering Thermophysics, 2014, 35(8):1629-1632. |
[8] | STUAB F W. The void fraction in subcooled boiling-prediction of the initial point of net vapor generation[J]. Journal of Heat Transfer, 1968, 90(1):151-157. |
[9] | 鲁钟琪. 两相流与沸腾传热[M]. 北京:清华大学出版社, 2002. LU Z Q. Two-Phase Flow and Boiling Heat Transfer[M]. Beijing:Tsinghua University Press, 2002. |
[10] | SAHA P, ZUBER N. Point of net vapor generation and vapor void fraction in subcooled boiling[J]. International Journal of Heat Transfer, 1974, 112(3):259-261. |
[11] | BARTEL M D, MAMORU I. Interfacial area measurements in subcooled flow boiling[J]. Nuclear Engineering and Design, 2001, 210(1):135-155. |
[12] | 徐济鋆. 沸腾传热和气液两相流[M]. 北京:原子能出版社, 2001. XU J J. Boiling Heat Transfer and Gas-Liquid Two-Phase Flow[M]. Beijing:Atomic Energy Press, 2001. |
[13] | 郝老迷, 胡古, 郭春秋. 沸腾传热和气液两相流动[M]. 哈尔滨:哈尔滨工程大学出版社, 2016. HAO L M, HU G, GUO C Q. Boiling Heat Transfer and Gas-Liquid Two-Phase Flow[M]. Harbin:Harbin Engineering University Press, 2016. |
[14] | BIBEAU E L, SALEUDEAN M. Subcooled void growth mechanisms and prediction at low pressure and low velocity[J]. International Journal of Multiphase Flow, 1994, 20(5):837-863. |
[15] | BIBEAU E L, SALEUDEAN M. A study of bubble ebullition in forced-convective subcooled nucleate boiling at low pressure[J]. International Journal of Heat Mass Transfer, 1994, 37(15):2245-2259. |
[16] | 阎昌琪, 孙中宁. 流动欠热沸腾通道内净蒸汽产生起始点的确定[J]. 核科学与工程, 2000, 20(2):130-134. YAN C Q, SUN Z N. The determination of the initial point of net vapor generation in flow subcooled boiling[J]. Chinese Journal of Nuclear Science and Engineering, 2000, 20(2):130-134. |
[17] | LEE S C, BANKOFF S G. A comparison of predictive models for the onset of significant void at low pressures in forced-convection subcooled boiling[J]. International Journal, 1988, 12(3):504-513. |
[18] | QI S, RUICHANG Y, HUA Z. Predictive study of the incipient point of net vapor generation in low-flow subcooled boiling[J]. Nuclear Engineering and Design, 2003, 225(2):249-256. |
[19] | 杨瑞昌, 王彦武, 唐虹, 等. 自然循环过冷沸腾净蒸汽产生点的实验研究[J]. 工程热物理学报, 2003, 24(2):247-250. YANG R C, WANG Y W, TANG H, et al. Experimental study on the point of net vapor generation in a natural circulation system with subcooled boiling[J]. Journal of Engineering Thermophysics, 2003, 24(2):247-250. |
[20] | UNAL H H. Determination of the initial point of net vapor generation in flow boiling system[J]. Heat Mass Transfer, 1975, 18(9):1095-1099. |
[21] | ROGERS J T. The onset of significant void in up-flow boiling of water at low pressure and velocities[J]. Heat Mass Transfer, 1987, 30(11):2247-2260. |
[22] | LEVY S. Forced convection subcooled boiling-prediction of vapor volumetric fraction[J]. International Journal of Heat and Mass Transfer, 1967, 10(7):951-965. |
[23] | 孙奇, 杨瑞昌. 低流速净蒸汽产生点模型预测过冷沸腾空泡率[J]. 热能动力工程, 2004, 19(2):124-126. SUN Q, YANG R C. Predictive models of the point of net vapor generation in low-flow subcooled boiling[J]. Journal of Engineering For Thermal Energy and Power, 2004, 19(2):124-126. |
[24] | 孙奇, 杨瑞昌, 赵华. 低流速过冷沸腾净蒸汽产生点计算模型[J]. 核动力工程, 2003, 24(5):417-420. SUN Q, YANG R C, ZHAO H. Prediction model for initial point of net vapor generation for low-flow boiling[J]. Nuclear Power Engineering, 2003, 24(5):417-420. |
[25] | 潘良明, 何川, 辛明道, 等. 单面与双面加热时窄缝流道内过冷沸腾气泡行为的比较[J]. 化工学报, 2004, 55(9):1519-1522. PAN L M, HE C, XIN M D, et al. Comparison of bubble behavior for double-side and single-side heating of subcooled flow boiling in narrow channels[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(9):1519-1522. |
[26] | BASU N, WARRIER G R, DHIR V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4):717-728. |
[27] | KANDLIKAR S G. Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling[J]. Journal of Heat Transfer, 1998, 120(2):395-401. |
[28] | 周云龙, 侯延栋, 李洪伟. 棒束通道内过冷沸腾起始点的实验研究[J]. 原子能科学技术, 2014, 48(8):1416-1420. ZHOU Y L, HOU Y D, LI H W. Experiment study on onset of nucleate boiling in rod bundle channel[J]. Atomic Energy Science and Technology, 2014, 48(8):1416-1420. |
[29] | KANDLIKAR S G. Development of a flow boiling map for subcooled and saturated flow boiling of different fluids inside circular tubes[J]. Journal of Heat Transfer, 1991, 113(1):190-200. |
[30] | MCADAMS W H, KENNEL W E, MINDEN C S, et al. Heat transfer at high rates to water with surface boiling[J]. Industrial & Engineering Chemistry, 1949, 41(9):1945-1953. |
[31] | JENS W H, LOTTES P A. Analysis of heat transfer, burnout, pressure drop and density data for high pressure water[J]. Boiling, 1951, 9(2):51-59. |
[32] | OMAR S, YAHIA A, DAESEONG J. ONB, OSV, and OFI for subcooled flow boiling through a narrow rectangular channel heated on one-side[J]. International Journal of Heat and Mass Transfer, 2018, 116:136-151. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[8] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[9] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[10] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[11] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[12] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[13] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[14] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[15] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 403
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||