CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1913-1922.DOI: 10.11949/j.issn.0438-1157.20181394
• Energy and environmental engineering • Previous Articles Next Articles
Jingchun YAN(),Laihong SHEN(),Shouxi JIANG,Huijun GE
Received:
2018-11-22
Revised:
2018-12-18
Online:
2019-05-05
Published:
2019-05-05
Contact:
Laihong SHEN
通讯作者:
沈来宏
作者简介:
<named-content content-type="corresp-name">闫景春</named-content>(1993—),男,博士研究生,<email>nick_vujicic@163.com</email>|沈来宏(1965—),男,教授,<email>lhshen@seu.edu.cn</email>
基金资助:
CLC Number:
Jingchun YAN, Laihong SHEN, Shouxi JIANG, Huijun GE. Chemical looping combustion of high-sodium coal and gasification kinetics of coal char[J]. CIESC Journal, 2019, 70(5): 1913-1922.
闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181394
Compositions | Contents |
---|---|
Fe2O3 | 83.25 |
SiO2 | 7.06 |
Al2O3 | 5.33 |
CaO | 0.23 |
P2O5 | 0.29 |
TiO2 | 0.09 |
K2O | 0.03 |
SO3 | 0.25 |
others | 3.47 |
Table 1 Elemental composition of fresh hematite oxygen carrier/%(mass)
Compositions | Contents |
---|---|
Fe2O3 | 83.25 |
SiO2 | 7.06 |
Al2O3 | 5.33 |
CaO | 0.23 |
P2O5 | 0.29 |
TiO2 | 0.09 |
K2O | 0.03 |
SO3 | 0.25 |
others | 3.47 |
工业分析/%(mass, ad) | 元素分析/%(mass, ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | V | FC | A | C | H | O | N | S |
14.58 | 28.05 | 53.03 | 6.34 | 64.18 | 4.302 | 9.751 | 0.50 | 0.347 |
Table 2 Proximate and ultimate analysis of ZD raw coal
工业分析/%(mass, ad) | 元素分析/%(mass, ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | V | FC | A | C | H | O | N | S |
14.58 | 28.05 | 53.03 | 6.34 | 64.18 | 4.302 | 9.751 | 0.50 | 0.347 |
CaO | SiO2 | SO3 | Fe2O3 | Al2O3 | Na2O | MgO | TiO2 | K2O | Others |
---|---|---|---|---|---|---|---|---|---|
21.55 | 16.56 | 13.99 | 14.05 | 9.88 | 9.22 | 5.75 | 1.75 | 0.51 | 6.74 |
Table 3 Elemental composition analysis of ZD ash/%(mass)
CaO | SiO2 | SO3 | Fe2O3 | Al2O3 | Na2O | MgO | TiO2 | K2O | Others |
---|---|---|---|---|---|---|---|---|---|
21.55 | 16.56 | 13.99 | 14.05 | 9.88 | 9.22 | 5.75 | 1.75 | 0.51 | 6.74 |
样品 | 元素分析 /%(mass, ad) | |||
---|---|---|---|---|
C | H | N | S | |
ZDJ | 81.06 | 3.147 | 0.76 | 1.613 |
WW-ZDJ | 80.43 | 2.977 | 0.96 | 1.071 |
AAW-ZDJ | 82.28 | 3.403 | 0.41 | 1.719 |
HAW-ZDJ | 79.71 | 2.876 | 1.01 | 1.48 |
Table 4 Ultimate analysis of coal char samples
样品 | 元素分析 /%(mass, ad) | |||
---|---|---|---|---|
C | H | N | S | |
ZDJ | 81.06 | 3.147 | 0.76 | 1.613 |
WW-ZDJ | 80.43 | 2.977 | 0.96 | 1.071 |
AAW-ZDJ | 82.28 | 3.403 | 0.41 | 1.719 |
HAW-ZDJ | 79.71 | 2.876 | 1.01 | 1.48 |
Sample | Water-soluble | HAc-soluble | HCl-soluble | Insoluble | Total |
---|---|---|---|---|---|
ZD | 1350 (58.70) | 359 (15.61) | 168 (7.30) | 423 (18.39) | 2300 (100) |
Table 5 Analysis of sodium in ZD sample/(μg/g)
Sample | Water-soluble | HAc-soluble | HCl-soluble | Insoluble | Total |
---|---|---|---|---|---|
ZD | 1350 (58.70) | 359 (15.61) | 168 (7.30) | 423 (18.39) | 2300 (100) |
反应模型 | 积分形式 | 微分形式 | 相关系数R | |||
---|---|---|---|---|---|---|
ZDJ | WW-ZDJ | AAW-ZDJ | HAW-ZDJ | |||
一维扩散 | | | 0.9473 | 0.9670 | 0.9940 | 0.9599 |
二维扩散(柱对称) | | | 0.9644 | 0.9721 | 0.9930 | 0.9564 |
三维扩散(球对称) | | | 0.9764 | 0.9720 | 0.9883 | 0.9427 |
随机核化(n=1) | | | 0.9752 | 0.9682 | 0.9940 | 0.9689 |
随机核化(n=2) | | | 0.9739 | 0.9606 | 0.9826 | 0.9726 |
随机核化(n=3) | | | 0.9722 | 0.9568 | 0.9720 | 0.9673 |
收缩核模型(柱对称) | | | 0.9701 | 0.9703 | 0.9894 | 0.9713 |
收缩核模型(球对称) | | | 0.9820 | 0.9876 | 0.9994 | 0.9990 |
Table 6 Reaction kinetics models and correlation coefficients
反应模型 | 积分形式 | 微分形式 | 相关系数R | |||
---|---|---|---|---|---|---|
ZDJ | WW-ZDJ | AAW-ZDJ | HAW-ZDJ | |||
一维扩散 | | | 0.9473 | 0.9670 | 0.9940 | 0.9599 |
二维扩散(柱对称) | | | 0.9644 | 0.9721 | 0.9930 | 0.9564 |
三维扩散(球对称) | | | 0.9764 | 0.9720 | 0.9883 | 0.9427 |
随机核化(n=1) | | | 0.9752 | 0.9682 | 0.9940 | 0.9689 |
随机核化(n=2) | | | 0.9739 | 0.9606 | 0.9826 | 0.9726 |
随机核化(n=3) | | | 0.9722 | 0.9568 | 0.9720 | 0.9673 |
收缩核模型(柱对称) | | | 0.9701 | 0.9703 | 0.9894 | 0.9713 |
收缩核模型(球对称) | | | 0.9820 | 0.9876 | 0.9994 | 0.9990 |
Sample | E/(kJ/mol) | A×10-4/min | R 2 |
---|---|---|---|
ZDJ | 146.98 | 11.30 | 0.982 |
WW-ZDJ | 104.68 | 0.11 | 0.988 |
AAW-ZDJ | 156.45 | 27.32 | 0.999 |
HAW-ZDJ | 204.66 | 1266.05 | 0.999 |
Table 7 Kinetic parameters for coal char gasification
Sample | E/(kJ/mol) | A×10-4/min | R 2 |
---|---|---|---|
ZDJ | 146.98 | 11.30 | 0.982 |
WW-ZDJ | 104.68 | 0.11 | 0.988 |
AAW-ZDJ | 156.45 | 27.32 | 0.999 |
HAW-ZDJ | 204.66 | 1266.05 | 0.999 |
1 | Kavouridis K , Koukouzas N . Coal and sustainable energy supply challenges and barriers[J]. Energy Policy, 2008, 36(2): 693-703. |
2 | International Energy Agency . World Energy Outlook 2016[M]. Paris Google Scholar, 2016. |
3 | Ye D P , Agnew J B , Zhang D K . Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209-1219. |
4 | Zhang D K , Agnew J B , Manzoori A R . Fluid bed gasification of Australian low-rank coal[C]//Proceedings of the Japan-Australia Joint Technical Meeting on Coal. Adelaide, Australia, 1995: 6-7. |
5 | 兰泽全 . 煤和黑液水煤浆沾污结渣机理及灰沉积动态特性研究[D]. 杭州: 浙江大学, 2004. |
Lan Z Q . Black liquor coal water slurry’s combustion characteristics and fouling/slagging performance[D]. Hangzhou: Zhejiang University, 2004. | |
6 | 周永刚, 薛志亮, 陈坚强, 等 . 高钠煤掺烧对某 660MW 机组锅炉炉膛结渣影响的测量[J]. 热力发电, 2017, 46(7): 38-45. |
Zhou Y G , Xue Z L , Chen J Q , et al . Influence of cofiring high sodium coal on slagging in furnace of a 660 MW unit ultra-supercritical boiler[J]. Thermal Power Generation,2017, 46(7): 38-45. | |
7 | Wang L , Hustad J E , Ø Skreiberg , et al . A critical review on additives to reduce ash related operation problems in biomass combustion applications[J]. Energy Procedia, 2012, 20: 20-29. |
8 | 沈铭科, 邱坤赞, 黄镇宇, 等 . 准东煤掺烧高岭土对固钠率及灰熔融特性影响研究[J]. 燃料化学学报, 2015, 43(9): 1044-1051. |
Shen M K , Qiu K Z , Huang Z Y , et al . Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J. Fuel Chem. Technol., 2015, 43(9): 1044-1051. | |
9 | Lewis W K , Gilliland E R . Production of pure carbon dioxide: US 2665972 [P]. 1954. |
10 | Richter H , Knoche K . Reversibility of combustion processes[J]. ACS Symp. Ser., 1983, 235: 71-86. |
11 | Ishida M , Jin H . A new advanced power-generation system using chemical-looping combustion[J]. Energy, 1994, 19(4): 415-422. |
12 | Song T , Shen L . Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
13 | Yan J , Shen L , Ou Z , et al . Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process[J]. Energy, 2019, 167: 168-180. |
14 | Gu H , Shen L , Zhang S , et al . Enhanced fuel conversion by staging oxidization in a continuous chemical looping reactor based on iron ore oxygen carrier[J]. Chemical Engineering Journal, 2018, 334: 829-836. |
15 | 葛晖骏, 沈来宏, 顾海明, 等 . 天然铁矿石为载氧体的准东煤化学链燃烧特性[J]. 燃料化学学报, 2016, 44(2): 184-191. |
Ge H J , Shen L H , Gu H M , et al . Characteristics of Zhundong coal in chemical looping combustion with natural hematite as oxygen carrier[J]. J. Fuel Chem. Technol., 2016, 44(2): 184-191. | |
16 | Cuvilas C A , Yang W . Spruce pretreatment for thermal application: water, alkaline, and diluted acid hydrolysis[J]. Energy & Fuels, 2012, 26(10): 6426-6431. |
17 | Zhang J , Han C L , Yan Z , et al . The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy & Fuels, 2001, 15(4): 786-793. |
18 | Sugawara K , Enda Y , Inoue H , et al . Dynamic behavior of trace elements during pyrolysis of coals[J]. Fuel, 2002, 81(11/12): 1439-1443. |
19 | Marek E J , Zheng Y , Scott S A . Enhancement of char gasification in CO2 during chemical looping combustion[J]. Chemical Engineering Journal, 2018, 354: 137-148. |
20 | Abad A , de Las Obras-Loscertales M , García-Labiano F , et al . In situ gasification chemical-looping combustion of coal using limestone as oxygen carrier precursor and sulphur sorbent[J]. Chemical Engineering Journal, 2017, 310: 226-239. |
21 | Yan J , Shen L , Jiang S , et al . Combustion performance of sewage sludge in a novel CLC system with a two-stage fuel reactor[J]. Energy & Fuels, 2017, 31(11): 12570-12581. |
22 | Wei X , Huang J , Liu T , et al . Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy & Fuels, 2008, 22(3): 1840-1844. |
23 | Gu H , Shen L , Zhong Z , et al . Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion[J]. Chemical Engineering Journal, 2015, 277: 70-78. |
24 | Zhang S , Shen L , Xiao J , et al . Effects of alkali and transition metals loaded on iron ore on chemical looping combustion with coal[C]//Proceedings of the 9th China–Korea Workshop on Clean Energy Technology. Huangshan, China, 2012. |
25 | 梁秀俊, 阎维平 . O2/CO2 气氛下煤焦燃烧反应动力学特性试验研究[J]. 华东电力, 2009, (12): 2104-2018. |
Liang X J , Yan W P . Experimental study of kinetics of coal char combustion characteristics under mixed O2/CO2 atmosphere[J]. East China Electric Power, 2009, (12): 2104-2018. | |
26 | 安国银, 米翠丽 . 几种恒定高温下混煤燃烧反应动力学模型对比[J]. 热力发电, 2016, (5): 9-15. |
An G Y , Mi C L . Comparative study on several combustion dynamic models of coal blends at constant high temperature[J]. Thermal Power Generation, 2016, (5): 9-15. | |
27 | Smith I W . The combustion rates of coal chars: a review[J]. Symposium (International) on Combustion, 1982, 19(1): 1045-1065. |
28 | 任轶舟, 王亦飞, 朱龙雏, 等 . 高温煤焦气化反应的 Langmuir-Hinshelwood 动力学模型[J]. 化工学报, 2014, 65(10): 3906-3915. |
Ren Y Z , Wang Y F , Zhu L C , et al . Langmuir-Hinshelwood kinetic model of high temperature coal char gasification reaction[J]. CIESC Journal, 2014, 65(10): 3906-3915. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[3] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[4] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[5] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[6] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[7] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[8] | Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes [J]. CIESC Journal, 2022, 73(5): 2206-2221. |
[9] | Xiao YANG, Rui DING, Mohan LI, Zhengchang SONG. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel [J]. CIESC Journal, 2022, 73(12): 5427-5437. |
[10] | Xiang GONG, Linsen LI, Zhao JIANG. Employing PdCo/SiO2 catalyst in high activity dehydrogenation reaction of heterocyclic H2 storage carrier [J]. CIESC Journal, 2022, 73(10): 4448-4460. |
[11] | Lihe ZHANG, Fan ZHANG, Changlun LI, Deping XU, Zhengang XU, Yonggang WANG. Construction and verification of BGL coal gasification kinetic model [J]. CIESC Journal, 2022, 73(10): 4668-4678. |
[12] | Tingting WANG, Xi ZENG, Zhennan HAN, Fang WANG, Peng WU, Guangwen XU. Reaction characteristics and kinetics of biomass char-steam gasification in micro-fluidized bed reaction analyzer [J]. CIESC Journal, 2022, 73(1): 294-307. |
[13] | Xu ZHAO, Changsheng BU, Xinye WANG, Xin ZHANG, Xiaolei CHENG, Naiji WANG, Guilin PIAO. Kinetics investigation on iron-based oxygen carrier aided oxy-fuel combustion of anthracite char [J]. CIESC Journal, 2022, 73(1): 384-392. |
[14] | Xujie CHEN, Xilei LYU, Huanhuan SHI, Liping ZHENG, Xiwen WEI, Penghui TIAN, Yuxi JIANG, Xiuyang LYU. Study on cyclodehydration of hexaric acids to 2,5- furandicarboxylic acid catalyzed with HBr-MgBr2 [J]. CIESC Journal, 2021, 72(9): 4658-4664. |
[15] | Tiantian PING, Xin YIN, Yu DONG, Shufeng SHEN. Research progress on reaction kinetics of CO2 with amines in nonaqueous solvents [J]. CIESC Journal, 2021, 72(8): 3968-3983. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||