CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4668-4678.DOI: 10.11949/0438-1157.20220815
• Energy and environmental engineering • Previous Articles Next Articles
Lihe ZHANG1,2(), Fan ZHANG1, Changlun LI1, Deping XU1(), Zhengang XU2, Yonggang WANG1
Received:
2022-06-13
Revised:
2022-09-05
Online:
2022-11-02
Published:
2022-10-05
Contact:
Deping XU
张利合1,2(), 张凡1, 李昌伦1, 许德平1(), 徐振刚2, 王永刚1
通讯作者:
许德平
作者简介:
张利合(1977—),男,博士研究生,高级工程师,zhanglih@chinacoal.com
基金资助:
CLC Number:
Lihe ZHANG, Fan ZHANG, Changlun LI, Deping XU, Zhengang XU, Yonggang WANG. Construction and verification of BGL coal gasification kinetic model[J]. CIESC Journal, 2022, 73(10): 4668-4678.
张利合, 张凡, 李昌伦, 许德平, 徐振刚, 王永刚. BGL煤气化动力学模型构建与验证[J]. 化工学报, 2022, 73(10): 4668-4678.
反应 | 指前因子 | 活化能 | 文献 | |
---|---|---|---|---|
异相反应 | R1 | 1.766×107 mol/(mol C·MPa·s) | 1.1304×105 J/mol | [ |
R2 | 2298.49 mol/(mol C·MPa·s) | 1.3634×105 J/mol | [ | |
R3 | 1376.34 mol/(mol C·MPa·s) | 1.3634×105 J/mol | [ | |
R4 | 1.2918 mol/(mol C·MPa·s) | 1.0803×105 J/mol | [ | |
均相反应 | R5 | 1.35×106 mol/(m3·s) | 60.09×106 J/mol | [ |
R6 | 3.0×1010 mol/(m3·s) | 2.40×105 J/mol | [ | |
R7 | 3.09×1011 mol/(m3·s) | 99.760×103 J/mol | [ | |
平衡常数 | ||||
R2 | lnKeq = -21000/T +21.4 | [ | ||
R3 | lgKeq = 2.554 - 6740.5/T + 1.556lgT - 1.092×10-4T - 3.71×10-7T2 | [ | ||
R4 | lgKeq = 11.79+ 3348/T - 5.957lgT +1.86×10-3T - 1.095×10-7T2 | [ | ||
R5 | lgKeq = 2.4943 - 2232/T -8.463×10-3lgT -2.203×10-4T | [ |
Table 1 Reaction kinetic parameters and equilibrium constant model of BGL coal gasification
反应 | 指前因子 | 活化能 | 文献 | |
---|---|---|---|---|
异相反应 | R1 | 1.766×107 mol/(mol C·MPa·s) | 1.1304×105 J/mol | [ |
R2 | 2298.49 mol/(mol C·MPa·s) | 1.3634×105 J/mol | [ | |
R3 | 1376.34 mol/(mol C·MPa·s) | 1.3634×105 J/mol | [ | |
R4 | 1.2918 mol/(mol C·MPa·s) | 1.0803×105 J/mol | [ | |
均相反应 | R5 | 1.35×106 mol/(m3·s) | 60.09×106 J/mol | [ |
R6 | 3.0×1010 mol/(m3·s) | 2.40×105 J/mol | [ | |
R7 | 3.09×1011 mol/(m3·s) | 99.760×103 J/mol | [ | |
平衡常数 | ||||
R2 | lnKeq = -21000/T +21.4 | [ | ||
R3 | lgKeq = 2.554 - 6740.5/T + 1.556lgT - 1.092×10-4T - 3.71×10-7T2 | [ | ||
R4 | lgKeq = 11.79+ 3348/T - 5.957lgT +1.86×10-3T - 1.095×10-7T2 | [ | ||
R5 | lgKeq = 2.4943 - 2232/T -8.463×10-3lgT -2.203×10-4T | [ |
样品 | 工业分析/% | 元素分析/% | Qgr,ad/(MJ/kg) | Qnet,ar/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mt | Mad | Aad | Vad | FCad | Cdaf | Hdaf | Odaf | Ndaf | St,daf | |||
标定期原料煤 | 10.85 | 1.65 | 6.52 | 32.88 | 58.95 | 82.35 | 4.80 | 10.93 | 1.14 | 0.77 | — | 24.42 |
热解试验煤样 | 7 | 1.66 | 12.72 | 34.12 | 51.5 | 80.54 | 4.91 | 11.38 | 1.21 | 1.96 | 28.51 | 27.59 |
Table 2 Proximate analysis and ultimate analysis of raw coal
样品 | 工业分析/% | 元素分析/% | Qgr,ad/(MJ/kg) | Qnet,ar/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mt | Mad | Aad | Vad | FCad | Cdaf | Hdaf | Odaf | Ndaf | St,daf | |||
标定期原料煤 | 10.85 | 1.65 | 6.52 | 32.88 | 58.95 | 82.35 | 4.80 | 10.93 | 1.14 | 0.77 | — | 24.42 |
热解试验煤样 | 7 | 1.66 | 12.72 | 34.12 | 51.5 | 80.54 | 4.91 | 11.38 | 1.21 | 1.96 | 28.51 | 27.59 |
热解气 | 体积分数/% |
---|---|
合计 | 100 |
CO | 17.93 |
CO2 | 1.84 |
CH4 | 38.80 |
H2 | 21.72 |
C2H4 | 1.94 |
H2O | 14.23 |
N2 | 2.31 |
H2S | 1.23 |
Table 3 Composition of pyrolysis gas of raw coal
热解气 | 体积分数/% |
---|---|
合计 | 100 |
CO | 17.93 |
CO2 | 1.84 |
CH4 | 38.80 |
H2 | 21.72 |
C2H4 | 1.94 |
H2O | 14.23 |
N2 | 2.31 |
H2S | 1.23 |
名称 | 模型 | 文献 |
---|---|---|
煤高位发热量/(MJ/kg) | [ | |
挥发分热解焓/(J/mol) | ||
煤低位发热量/(MJ/kg) | ||
固定碳显焓/(J/mol) | [ | |
挥发分比热容/(J/(kg·K)) | 基本挥发分 次级挥发分 | [ |
灰分比热容/(J/(kg·K)) | [ | |
焦油比热容/(J/(mol·K)) | [ |
Table 4 Physical property parameter model of pyrolysis section simulation
名称 | 模型 | 文献 |
---|---|---|
煤高位发热量/(MJ/kg) | [ | |
挥发分热解焓/(J/mol) | ||
煤低位发热量/(MJ/kg) | ||
固定碳显焓/(J/mol) | [ | |
挥发分比热容/(J/(kg·K)) | 基本挥发分 次级挥发分 | [ |
灰分比热容/(J/(kg·K)) | [ | |
焦油比热容/(J/(mol·K)) | [ |
名称 | 单位 | 数值 | 名称 | 单位 | 数值 |
---|---|---|---|---|---|
操作压力 | MPa | 4.09 | 蒸汽 | kg/s | 3.23 |
原料煤 | kg/s | 9.46 | 氧气 | kg/s | 4.25 |
煤粒度 | mm | 6.00 | 气化剂温度 | ℃ | 266 |
煤真密度 | kg/m3 | 1400 | 熔渣碳残留率 | % | 0.10 |
Table 5 Overall simulation input conditions of BGL coal gasification
名称 | 单位 | 数值 | 名称 | 单位 | 数值 |
---|---|---|---|---|---|
操作压力 | MPa | 4.09 | 蒸汽 | kg/s | 3.23 |
原料煤 | kg/s | 9.46 | 氧气 | kg/s | 4.25 |
煤粒度 | mm | 6.00 | 气化剂温度 | ℃ | 266 |
煤真密度 | kg/m3 | 1400 | 熔渣碳残留率 | % | 0.10 |
组成 | 计算值 (湿基)/% | 计算值 (干基)/% | 标定实测 (干基)/% | 标定校核值(湿基)/% |
---|---|---|---|---|
合计 | 100.00 | 100.00 | 100.00 | 100.00 |
CO | 54.03 | 60.30 | 58.05 | 52.46 |
CO2 | 3.57 | 3.98 | 4.23 | 3.72 |
H2 | 23.00 | 25.67 | 28.30 | 25.18 |
CH4 | 7.70 | 8.59 | 7.16 | 7.66 |
H2O | 10.40 | 0 | — | 9.97 |
O2 | 0.28 | 0.31 | 0.10 | 0 |
C2H4 | 0.36 | 0.40 | — | 0.36 |
N2 | 0.43 | 0.48 | 1.96 | 0.41 |
H2S | 0.23 | 0.26 | 0.20 | 0.24 |
Table 6 Comparison between calculated value and calibration value of crude gas composition
组成 | 计算值 (湿基)/% | 计算值 (干基)/% | 标定实测 (干基)/% | 标定校核值(湿基)/% |
---|---|---|---|---|
合计 | 100.00 | 100.00 | 100.00 | 100.00 |
CO | 54.03 | 60.30 | 58.05 | 52.46 |
CO2 | 3.57 | 3.98 | 4.23 | 3.72 |
H2 | 23.00 | 25.67 | 28.30 | 25.18 |
CH4 | 7.70 | 8.59 | 7.16 | 7.66 |
H2O | 10.40 | 0 | — | 9.97 |
O2 | 0.28 | 0.31 | 0.10 | 0 |
C2H4 | 0.36 | 0.40 | — | 0.36 |
N2 | 0.43 | 0.48 | 1.96 | 0.41 |
H2S | 0.23 | 0.26 | 0.20 | 0.24 |
序号 | 试验方法 | 单次煤样/g | 粒度/mm | 加热终温/℃ | 操作压力/MPa | 产率/%(质量) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
半焦 | 焦油 | 热解气 | 水 | |||||||||
a | 铝甑热解试验 | 20 | <0.2 | 650 | 0.1 | 73.00 | 10.70 | 8.55 | 7.75 | |||
b | 加压低温干馏试验 | 60 | 0.5~2.0 | 650 | 0.1 | 68.67 | 8.85 | 12.82 | 9.66 | |||
c | 加压低温干馏试验 | 60 | 0.5~2.0 | 650 | 3.0 | 74.32 | 3.75 | 14.93 | 7.00 | |||
d | 固定床热解试验 | 3000 | 10~50 | 650 | 0.1 | 76.73 | 5.90 | 8.98 | 8.39 | |||
序号 | 热解气组成/% | |||||||||||
H2 | CO | CO2 | O2 | N2 | CH4 | C2H4 | C2H6 | C3H6 | C3H8 | C n H m | 合计 | |
b | 49.01 | 14.34 | 2.93 | 0.31 | 2.02 | 25.29 | 0.26 | 4.05 | 0.65 | 1.12 | 0.02 | 100.00 |
c | 15.99 | 7.66 | 12.40 | 0.45 | 1.79 | 58.44 | 0.09 | 1.99 | 0.84 | 0.33 | 0.02 | 100.00 |
d | 33.88 | 11.97 | 7.63 | 0.25 | 1.45 | 37.86 | — | — | — | — | 6.96 | 100.00 |
Main data of coal pyrolysis test results
序号 | 试验方法 | 单次煤样/g | 粒度/mm | 加热终温/℃ | 操作压力/MPa | 产率/%(质量) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
半焦 | 焦油 | 热解气 | 水 | |||||||||
a | 铝甑热解试验 | 20 | <0.2 | 650 | 0.1 | 73.00 | 10.70 | 8.55 | 7.75 | |||
b | 加压低温干馏试验 | 60 | 0.5~2.0 | 650 | 0.1 | 68.67 | 8.85 | 12.82 | 9.66 | |||
c | 加压低温干馏试验 | 60 | 0.5~2.0 | 650 | 3.0 | 74.32 | 3.75 | 14.93 | 7.00 | |||
d | 固定床热解试验 | 3000 | 10~50 | 650 | 0.1 | 76.73 | 5.90 | 8.98 | 8.39 | |||
序号 | 热解气组成/% | |||||||||||
H2 | CO | CO2 | O2 | N2 | CH4 | C2H4 | C2H6 | C3H6 | C3H8 | C n H m | 合计 | |
b | 49.01 | 14.34 | 2.93 | 0.31 | 2.02 | 25.29 | 0.26 | 4.05 | 0.65 | 1.12 | 0.02 | 100.00 |
c | 15.99 | 7.66 | 12.40 | 0.45 | 1.79 | 58.44 | 0.09 | 1.99 | 0.84 | 0.33 | 0.02 | 100.00 |
d | 33.88 | 11.97 | 7.63 | 0.25 | 1.45 | 37.86 | — | — | — | — | 6.96 | 100.00 |
1 | 刘旭光. 煤热解DAEM模型分析及固定床煤加压气化过程数学模拟[D]. 太原: 中国科学院山西煤炭化学研究所, 2000. |
Liu X G. The analysis of distributed activation energy model for coal pyrolysis and the simulation of pressurized gasification of coal in fixed-bed gasifier [D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2000. | |
2 | 刘亮, 原满, 田红, 等. BGL碎煤熔渣气化炉气化过程模拟[J]. 化学工程, 2013, 41(7): 64-68. |
Liu L, Yuan M, Tian H, et al. Simulation of BGL gasifier gasification process[J]. Chemical Engineering (China), 2013, 41(7): 64-68. | |
3 | 田硕, 刘琳琳, 都健. 基于不同气化剂的BGL炉煤气化的模拟和优化[J]. 华东理工大学学报(自然科学版), 2018, 44(4): 518-523. |
Tian S, Liu L L, Du J. Simulation and optimization of BGL coal gasification based on different gasification agents[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2018, 44(4): 518-523. | |
4 | Yang S, Qian Y, Liu Y J, et al. Modeling, simulation, and techno-economic analysis of Lurgi gasification and BGL gasification for coal-to-SNG[J]. Chemical Engineering Research and Design, 2017, 117: 355-368. |
5 | Qin S Y, Zhang X Z, Wang M, et al. Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): process modeling, simulation and thermodynamic analysis[J]. Energy, 2021, 229: 120697. |
6 | 郭小雪, 陈良奇, 朱晓龙, 等. BGL气化炉新型建模方法及优化分析[J]. 科学通报, 2021, 66(21): 2719-2727. |
Guo X X, Chen L Q, Zhu X L, et al. Numerical simulation and optimization analysis of BGL gasifier with a novel model[J]. Chinese Science Bulletin, 2021, 66(21): 2719-2727. | |
7 | Xu J, Yu S, Wang N, et al. Characterization of high-turbulence zone in slowly moving bed slagging coal gasifier by a 3D mathematical model[J]. Powder Technology, 2017, 314: 524-531. |
8 | 杜时, 樊俊杰, 张忠孝, 等. 固定床熔渣气化炉内冷态气固两相流动特性[J]. 洁净煤技术, 2018, 24(2): 46-50. |
Du S, Fan J J, Zhang Z X, et al. Cold model of gas-solid two-phase flow characteristics in fixed bed slagging gasifier[J]. Clean Coal Technology, 2018, 24(2): 46-50. | |
9 | Ismail T M, Shi M L, Xu J L, et al. Assessment of coal gasification in a pressurized fixed bed gasifier using an ASPEN plus and Euler-Euler model[J]. International Journal of Coal Science & Technology, 2020, 7(3): 516-535. |
10 | 张明. 煤制合成天然气技术与应用[M]. 北京: 化学工业出版社, 2017:220-240. |
Zhang M. Coal-based Synthetic Natural Gas Technology and Application[M]. Beijing: Chemical Industry Press, 2017:220-240. | |
11 | 陈江明. 固定床熔渣气化炉排渣影响因素及其控制方法[J]. 洁净煤技术, 2018, 24(4):84-89. |
Chen J M. Influence factors and slagging control methods of fixed bed slag gasifier[J]. Clean Coal Technology, 2018, 24(4):84-89. | |
12 | 王光德, 沙兴中, 任德庆. 加压移动床煤气化反应器的数学模型[J]. 煤气与热力, 1993, 13(2): 14-27. |
Wang G D, Sha X Z, Ren D Q. Pressured moving-bed coal gasification modeling[J]. Gas & Heat, 1993, 13(2): 14-27. | |
13 | 项友谦. 固体燃料加压气化过程的分析与模拟[J]. 煤气与热力, 1987, 7(1): 3-11. |
Xiang Y Q. Analysis and simulation of solid fuel gasification process under pressure[J]. Gas & Heat, 1987, 7(1): 3-11. | |
14 | 袁渭康, Wei J. 移动床煤气化器的一维模型性能研究[J]. 化工学报, 1984, 35(4):320-327. |
Yuan W K, Wei J. The performance of moving bed coal gasifiers under one-dimensional modeling[J]. Journal of Chemical Industry and Engineering (China), 1984, 35(4): 320-327. | |
15 | Yoon H, Wei J, Denn M M. A model for moving-bed coal gasification reactors[J]. AIChE Journal, 1978, 24(5): 885-903. |
16 | Hobbs M L, Radulovic P T, Smoot L D. Modeling fixed-bed coal gasifiers[J]. AIChE Journal, 1992, 38(5): 681-702. |
17 | Stillman R. Moving bed coal gasifier dynamics using MOC and MOL techniques[M]//Chemical Reactors. Washington, D. C. : American Chemical Society, 1981: 331-365. |
18 | 步学朋, 彭万旺, 项友谦. 固定床加压气化数学模型研究[J]. 煤化工, 1993, 23(1): 6-15, 35. |
Bu X P, Peng W W, Xiang Y Q. Study on mathematical model of pressurized gasification in fixed bed[J]. Chemical Engineering, 1995, 23(1): 6-15, 35. | |
19 | 朱有健, 王定标, 周俊杰. 固定床煤气化炉的模拟与优化[J]. 化工学报, 2011, 62(6): 1606-1611. |
Zhu Y J, Wang D B, Zhou J J. Simulation and optimization of fixed bed gasifier[J]. CIESC Journal, 2011, 62(6): 1606-1611. | |
20 | Macak J, Malecha J. Mathematical model for the gasification of coal under pressure[J]. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(1): 92-98. |
21 | 徐振刚, 刘国海, 于涌年. 煤催化气化反应的收缩核模型[J]. 化工学报, 1988, 39(4): 488-494. |
Xu Z G, Liu G H, Yu Y N. Shrinking unreacted-core model for catalytic steam gasification of Jiao Zuo anthracite[J]. Journal of Chemical Industry and Engineering(China), 1988, 39(4): 488-494. | |
22 | 林鹏云. 高温条件下焦炭反应特性实验研究及层燃数值模拟[D]. 上海: 上海交通大学, 2011. |
Lin P Y. Experimental research of char combustion characteristics under high temperature and bed combustion numerical simulation[D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
23 | 项友谦. 煤转化过程基础理论与应用[M]. 徐州: 中国矿业大学出版社, 2017: 90-110. |
Xiang Y Q. Basic Theory and Application of Coal Conversion Process [M]. Xuzhou: China University of Mining and Technology Press, 2017:90-110. | |
24 | 孟德喜. 块状原煤及煤焦热解气化过程中的反应特性和结构演变研究[D]. 上海: 华东理工大学, 2020. |
Meng D X. Research on reaction characteristics and structure evolution during pyrolysis and gasification of lump raw coal and coal char[D]. Shanghai: East China University of Science and Technology, 2020. | |
25 | Chen C X, Horio M, Kojima T. Numerical simulation of entrained flow coal gasifiers(Part I): Modeling of coal gasification in an entrained flow gasifier[J]. Chemical Engineering Science, 2000, 55(18): 3861-3874. |
26 | 薛爱军. 层式下吸式生物质气化的理论分析及试验研究[D]. 济南: 山东大学, 2016. |
Xue A J. Theoretical analysis and experimental research of stratified downdraft biomass gasification[D]. Jinan: Shandong University, 2016. | |
27 | 岑可法. 高等燃烧学[M]. 杭州: 浙江大学出版社, 2002:370-379. |
Cen K F. Advanced Combustion Theory[M]. Hangzhou: Zhejiang University Press, 2002:370-379. | |
28 | 陈立平. 煤粉热解调控及半焦富氧燃烧若干理论与试验研究[D]. 杭州: 浙江大学, 2018. |
Chen L P. Theoretical and experimental investigation of coal pyrolysis at high-temperature and coal-char combustion/gasification in air/oxy atmosphere[D]. Hangzhou: Zhejiang University, 2018. | |
29 | 吴正舜, 张春林, 陈汉平, 等. 煤在燃烧过程中破碎模型的建立[J]. 燃料化学学报, 2003, 31(1): 17-21. |
Wu Z S, Zhang C L, Chen H P, et al. Establishment of fragment model of coal during combustion[J]. Journal of Fuel Chemistry and Technology, 2003, 31(1): 17-21. | |
30 | 林善俊, 周志杰, 霍威, 等. 内扩散对煤和石油焦水蒸气气化反应性能的影响[J]. 燃料化学学报, 2014, 42(8): 905-912. |
Lin S J, Zhou Z J, Huo W, et al. Effect of internal diffusion on steam gasification reactivity of coal and petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2014, 42(8): 905-912. | |
31 | 杨帆, 范晓雷, 周志杰, 等. 随机孔模型应用于煤焦与CO2气化的动力学研究[J]. 燃料化学学报, 2005, 33(6): 671-676. |
Yang F, Fan X L, Zhou Z J, et al. Kinetics of coal char gasification with CO2 random pore model[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 671-676. | |
32 | Sudiro M, Pellizzaro M, Bezzo F, et al. Simulated moving bed technology applied to coal gasification[J]. Chemical Engineering Research and Design, 2010, 88(4): 465-475. |
33 | 傅维镳. 煤燃烧理论及其宏观通用规律[M]. 北京:清华大学出版社, 2003:13-25. |
Fu W B. Coal Combustion Theory and Its Macro General Laws [M]. Beijing: Tsinghua University Press, 2003:13-25. | |
34 | Eisermann W, Johnson P, Conger W L. Estimating thermodynamic properties of coal, char, tar and ash[J]. Fuel Processing Technology, 1980, 3(1): 39-53. |
35 | 李英泽, 杨路, 王琦, 等. BGL炉煤气化过程建模和模拟[J]. 化工学报, 2020, 71(3): 1174-1188. |
Li Y Z, Yang L, Wang Q, et al. Modeling and simulation of gasification process in BGL furnace[J]. CIESC Journal, 2020, 71(3): 1174-1188. | |
36 | 史士东. 煤加氢液化工程学基础[M]. 北京: 化学工业出版社, 2012: 32-35. |
Shi S D. Fundamentals of Coal Liquefaction Engineering[M]. Beijing: Chemical Industry Press, 2012:32-35. | |
37 | 周琦, 张旭, 王岩, 等. 折流内构件移动床中煤在不同停留时间下的热解行为特性[J]. 燃料化学学报, 2021, 49(5): 703-711. |
Zhou Q, Zhang X, Wang Y, et al. Pyrolysis behavior of coal in a moving bed with baffled internals under different residence times[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 703-711. | |
38 | 霍海龙, 李钦晔, 周文宁, 等. 鲁奇炉干馏段内大颗粒煤的热解特性研究[J]. 煤炭学报, 2019, 44(S2): 665-672. |
Huo H L, Li Q Y, Zhou W N, et al. Pyrolysis analysis of large coal particle in dry distillation section of Lurgi gasifier[J]. Journal of China Coal Society, 2019, 44(S2): 665-672. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[8] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[11] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[12] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 282
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||