CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 384-392.DOI: 10.11949/0438-1157.20210849
• Energy and environmental engineering • Previous Articles Next Articles
Xu ZHAO1(),Changsheng BU1(),Xinye WANG1,Xin ZHANG2,Xiaolei CHENG2,Naiji WANG2,Guilin PIAO1
Received:
2021-06-24
Revised:
2021-10-11
Online:
2022-01-18
Published:
2022-01-05
Contact:
Changsheng BU
赵旭1(),卜昌盛1(),王昕晔1,张鑫2,程晓磊2,王乃继2,朴桂林1
通讯作者:
卜昌盛
作者简介:
赵旭(1996—),男,硕士研究生,基金资助:
CLC Number:
Xu ZHAO, Changsheng BU, Xinye WANG, Xin ZHANG, Xiaolei CHENG, Naiji WANG, Guilin PIAO. Kinetics investigation on iron-based oxygen carrier aided oxy-fuel combustion of anthracite char[J]. CIESC Journal, 2022, 73(1): 384-392.
赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392.
Add to citation manager EndNote|Ris|BibTeX
含量(工业分析)/%(mass, ad) | 含量(元素分析)/%(mass, ad) | ||||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O | N | S | |
1.12 | 35.01 | 9.63 | 54.24 | 55.26 | 2.4 | 4.16 | 0.83 | 1.22 |
Table 1 Proximate and ultimate analyses of anthracite coal
含量(工业分析)/%(mass, ad) | 含量(元素分析)/%(mass, ad) | ||||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O | N | S | |
1.12 | 35.01 | 9.63 | 54.24 | 55.26 | 2.4 | 4.16 | 0.83 | 1.22 |
含量/%(mass) | ||||||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O |
52.41 | 32.91 | 4.5 | 3.87 | 1.76 | 0.53 | 0.15 |
Table 2 Ash analysis of anthracite coal
含量/%(mass) | ||||||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O |
52.41 | 32.91 | 4.5 | 3.87 | 1.76 | 0.53 | 0.15 |
载氧体 | 含量/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe2O3 | SiO2 | CaO | MgO | Al2O3 | MnO | P2O5 | TiO2 | 其他 | |
Fe2O3 | 99.9 | ― | ― | ― | ― | ― | ― | ― | 0.1 |
赤铁矿 | 85.92 | 8.17 | 0.52 | 1.34 | 1.53 | ― | ― | ― | 2.52 |
钢渣 | 27.76 | 13.51 | 36.15 | 9.44 | 3.78 | 4.76 | 1.64 | 1.18 | 1.78 |
Table 3 Chemical composition of three types of iron-based oxygen carriers
载氧体 | 含量/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe2O3 | SiO2 | CaO | MgO | Al2O3 | MnO | P2O5 | TiO2 | 其他 | |
Fe2O3 | 99.9 | ― | ― | ― | ― | ― | ― | ― | 0.1 |
赤铁矿 | 85.92 | 8.17 | 0.52 | 1.34 | 1.53 | ― | ― | ― | 2.52 |
钢渣 | 27.76 | 13.51 | 36.15 | 9.44 | 3.78 | 4.76 | 1.64 | 1.18 | 1.78 |
Fig.4 Average and maximum burning rate of anthracite char and three types of iron-based oxygen carriers aided combustion at the heating rate of 15℃/min
样品 | ti/min | Ti/℃ | tb/min | Tb/℃ |
---|---|---|---|---|
AC | 39.2 | 617 | 56.2 | 878 |
AC-F | 39.09 | 616 | 51.5 | 803 |
AC-H | 39.26 | 619 | 51.4 | 802 |
AC-SS | 39.24 | 619 | 51.9 | 810 |
Table 4 Combustion characteristics of anthracite char and three iron-based oxygen carriers aided combustion at the heating rate of 15℃/min
样品 | ti/min | Ti/℃ | tb/min | Tb/℃ |
---|---|---|---|---|
AC | 39.2 | 617 | 56.2 | 878 |
AC-F | 39.09 | 616 | 51.5 | 803 |
AC-H | 39.26 | 619 | 51.4 | 802 |
AC-SS | 39.24 | 619 | 51.9 | 810 |
Fig.6 Comprehensive combustion index of anthracite coal char and three types of iron-based oxygen carriers aided combustion at the heating rate of 15℃/min
转化率α | AC | AC-F | AC-H | AC-SS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E/(kJ/mol) | A/min-1 | R2 | E/(kJ/mol) | A/min-1 | R2 | E/(kJ/mol) | A/min-1 | R2 | E/(kJ/mol) | A/min-1 | R2 | |
0.2 | 82.84 | 8.45×103 | 0.99847 | 111.77 | 5.96×105 | 0.99999 | 95.07 | 5.27×104 | 0.99442 | 92.90 | 3.88×104 | 0.99015 |
0.3 | 74.94 | 1.97×103 | 0.99794 | 100.46 | 9.14×104 | 0.99994 | 89.67 | 1.86×104 | 0.99727 | 91.05 | 2.23×104 | 0.99032 |
0.4 | 66.11 | 442.17 | 0.99817 | 91.23 | 2.03×104 | 0.99988 | 84.29 | 7.04×103 | 0.99776 | 86.99 | 1.00×104 | 0.98957 |
0.5 | 58.24 | 117.99 | 0.99811 | 82.67 | 5.11×103 | 0.99992 | 78.78 | 2.70×103 | 0.99777 | 81.88 | 4.02×103 | 0.98765 |
0.6 | 51.24 | 36.56 | 0.99868 | 75.44 | 1.57×103 | 0.99993 | 74.17 | 1.20×103 | 0.99787 | 77.28 | 1.76×103 | 0.98532 |
0.7 | 44.80 | 12.47 | 0.99915 | 69.60 | 591.09 | 0.99987 | 70.69 | 621.41 | 0.99831 | 72.80 | 792.38 | 0.98131 |
0.8 | 39.31 | 4.89 | 0.99962 | 64.45 | 244.07 | 0.99975 | 67.69 | 346.58 | 0.99896 | 68.32 | 359.50 | 0.97437 |
0.9 | 34.94 | 2.25 | 0.99998 | 61.29 | 128.66 | 0.99905 | 67.09 | 260.15 | 0.99986 | 64.39 | 173.31 | 0.96528 |
平均值 | 56.55 | 1.38×103 | ― | 82.11 | 8.94×104 | ― | 78.43 | 1.04×104 | ― | 79.45 | 9.79×103 | ― |
Table 5 Activation energy and pre-exponential factor of anthracite char and three types of iron-based oxygen carriers aided combustion
转化率α | AC | AC-F | AC-H | AC-SS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E/(kJ/mol) | A/min-1 | R2 | E/(kJ/mol) | A/min-1 | R2 | E/(kJ/mol) | A/min-1 | R2 | E/(kJ/mol) | A/min-1 | R2 | |
0.2 | 82.84 | 8.45×103 | 0.99847 | 111.77 | 5.96×105 | 0.99999 | 95.07 | 5.27×104 | 0.99442 | 92.90 | 3.88×104 | 0.99015 |
0.3 | 74.94 | 1.97×103 | 0.99794 | 100.46 | 9.14×104 | 0.99994 | 89.67 | 1.86×104 | 0.99727 | 91.05 | 2.23×104 | 0.99032 |
0.4 | 66.11 | 442.17 | 0.99817 | 91.23 | 2.03×104 | 0.99988 | 84.29 | 7.04×103 | 0.99776 | 86.99 | 1.00×104 | 0.98957 |
0.5 | 58.24 | 117.99 | 0.99811 | 82.67 | 5.11×103 | 0.99992 | 78.78 | 2.70×103 | 0.99777 | 81.88 | 4.02×103 | 0.98765 |
0.6 | 51.24 | 36.56 | 0.99868 | 75.44 | 1.57×103 | 0.99993 | 74.17 | 1.20×103 | 0.99787 | 77.28 | 1.76×103 | 0.98532 |
0.7 | 44.80 | 12.47 | 0.99915 | 69.60 | 591.09 | 0.99987 | 70.69 | 621.41 | 0.99831 | 72.80 | 792.38 | 0.98131 |
0.8 | 39.31 | 4.89 | 0.99962 | 64.45 | 244.07 | 0.99975 | 67.69 | 346.58 | 0.99896 | 68.32 | 359.50 | 0.97437 |
0.9 | 34.94 | 2.25 | 0.99998 | 61.29 | 128.66 | 0.99905 | 67.09 | 260.15 | 0.99986 | 64.39 | 173.31 | 0.96528 |
平均值 | 56.55 | 1.38×103 | ― | 82.11 | 8.94×104 | ― | 78.43 | 1.04×104 | ― | 79.45 | 9.79×103 | ― |
Fig.8 Fitting curves of compensation effect between the activation energy E and the pre-exponential factor A for anthracite char and three types of iron-based oxygen carriers aided combustion
样品 | a | b | R2 |
---|---|---|---|
AC | 0.170 | 5.13 | 0.999 |
AC-F | 0.166 | 5.19 | 0.999 |
AC-H | 0.185 | 6.68 | 0.998 |
AC-SS | 0.185 | 6.81 | 0.998 |
Table 6 Compensation factors and fitting coefficients for anthracite char and three iron-based oxygen carriers aided combustion
样品 | a | b | R2 |
---|---|---|---|
AC | 0.170 | 5.13 | 0.999 |
AC-F | 0.166 | 5.19 | 0.999 |
AC-H | 0.185 | 6.68 | 0.998 |
AC-SS | 0.185 | 6.81 | 0.998 |
1 | Leckner B, Gómez-Barea A. Oxy-fuel combustion in circulating fluidized bed boilers[J]. Applied Energy, 2014, 125: 308-318. |
2 | Duan L B, Li L, Liu D Y, et al. Fundamental study on fuel-staged oxy-fuel fluidized bed combustion[J]. Combustion and Flame, 2019, 206: 227-238. |
3 | Duan L B, Sun H C, Zhao C S, et al. Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle[J]. Fuel, 2014, 127: 47-51. |
4 | Bu C S, Pallarès D, Chen X P, et al. Oxy-fuel combustion of a single fuel particle in a fluidized bed: char combustion characteristics, an experimental study[J]. Chemical Engineering Journal, 2016, 287: 649-656. |
5 | Salinero J, Gómez-Barea A, Fuentes-Cano D, et al. The influence of CO2 gas concentration on the char temperature and conversion during oxy-fuel combustion in a fluidized bed[J]. Applied Energy, 2018, 215: 116-130. |
6 | Jin X Z, Lu J F, Yang H R, et al. Comprehensive mathematical model for coal combustion in a circulating fluidized bed combustor[J]. Tsinghua Science and Technology, 2001, 6(4): 319-325. |
7 | Fernandez M J, Lyngfelt A, Johnsson F. Gas concentrations in the lower part of the combustion chamber of a circulating fluidized bed boiler:influence of bed height[J]. Energy & Fuels, 2000, 14(6): 1127-1132. |
8 | Yue G X, Lu J F, Zhang H, et al. Design theory of circulating fluidized bed boilers[C]//Proceedings of 18th International Conference on Fluidized Bed Combustion. Toronto, Ontario, Canada, 2008: 135-146. |
9 | Leckner B. Fluidized bed combustion: mixing and pollutant limitation[J]. Progress in Energy and Combustion Science, 1998, 24(1): 31-61. |
10 | Thunman H, Lind F, Breitholtz C, et al. Using an oxygen-carrier as bed material for combustion of biomass in a 12-MWth circulating fluidized-bed boiler[J]. Fuel, 2013, 113: 300-309. |
11 | Lind F, Corcoran A, Thunman H. Validation of the oxygen buffering ability of bed materials used for OCAC in a large scale CFB boiler[J]. Powder Technology, 2017, 316: 462-468. |
12 | Corcoran A, Knutsson P, Lind F, et al. Mechanism for migration and layer growth of biomass ash on ilmenite used for oxygen carrier aided combustion[J]. Energy & Fuels, 2018, 32(8): 8845-8856. |
13 | Hildor F, Mattisson T, Leion H, et al. Steel converter slag as an oxygen carrier in a 12 MWth CFB boiler—ash interaction and material evolution[J]. International Journal of Greenhouse Gas Control, 2019, 88: 321-331. |
14 | Wang P N, Leion H, Yang H R. Oxygen-carrier-aided combustion in a bench-scale fluidized bed[J]. Energy & Fuels, 2017, 31(6): 6463-6471. |
15 | Hughes R W, Lu D Y, Symonds R T. Improvement of oxy-FBC using oxygen carriers: concept and combustion performance[J]. Energy & Fuels, 2017, 31(9): 10101-10115. |
16 | Rydén M, Hanning M L, Lind F. Oxygen carrier aided combustion (OCAC) of wood chips in a 12 MWth circulating fluidized bed boiler using steel converter slag as bed material[J]. Applied Sciences, 2018, 8(12): 2657. |
17 | Adanez J, Abad A, Garcia-Labiano F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
18 | Adánez J, Abad A, Mendiara T, et al. Chemical looping combustion of solid fuels[J]. Progress in Energy and Combustion Science, 2018, 65: 6-66. |
19 | 卜昌盛, 王昕晔, 张居兵, 等. 一种流化床载氧体辅助富氧燃烧系统及方法: 110094722B[P]. 2020-08-18. |
Bu C S, Wang X Y, Zhang J B, et al. System and method of oxygen carrier aided oxy-fuel fluidized bed combustion: 110094722B[P]. 2020-08-18 | |
20 | Ismail M, Liu W, Dunstan M T, et al. Development and performance of iron based oxygen carriers containing calcium ferrites for chemical looping combustion and production of hydrogen[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4073-4084. |
21 | Sun Z, Chen S Y, Hu J, et al. Ca2Fe2O5: a promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process[J]. Applied Energy, 2018, 211: 431-442. |
22 | Feng Y C, Wang N N, Guo X. Reaction mechanism of methane conversion over Ca2Fe2O5 oxygen carrier in chemical looping hydrogen production[J]. Fuel, 2021, 290: 120094-120102 |
23 | Lin Y S, Ma X Q, Ning X X, et al. TGA-FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes[J]. Energy Conversion and Management, 2015, 89: 727-734. |
24 | Parshetti G K, Quek A, Betha R, et al. TGA-FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal[J]. Fuel Processing Technology, 2014, 118: 228-234. |
25 | Su W, Ma H Z, Wang Q H, et al. Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99: 79-84. |
26 | Li X G, Lv Y, Ma B G, et al. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal[J]. Bioresource Technology, 2011, 102(20): 9783-9787. |
27 | Zhang L H, Duan F, Huang Y J. Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds[J]. Bioresource Technology, 2015, 175: 174-181. |
28 | Gong X Z, Guo Z C, Wang Z. Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3[J]. Combustion and Flame, 2010, 157(2): 351-356. |
29 | Basu P. Combustion of coal in circulating fluidized-bed boilers: a review[J]. Chemical Engineering Science, 1999, 54(22): 5547-5557. |
30 | Arthur J R. Reactions between carbon and oxygen[J]. Transactions of the Faraday Society, 1951, 47: 164. |
31 | van Devener B, Anderson S L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3[J]. Energy & Fuels, 2006, 20(5): 1886-1894. |
32 | Gong X Z, Guo Z C, Wang Z. Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by Differential Thermal Analysis (DTA)[J]. Energy, 2010, 35(2): 506-511. |
33 | Kongkaew N, Pruksakit W, Patumsawad S. Thermogravimetric kinetic analysis of the pyrolysis of rice straw[J]. Energy Procedia, 2015, 79: 663-670. |
34 | 胡荣祖, 高胜利, 赵凤起. 热分析动力学[M]. 2版. 北京: 科学出版社, 2008. |
Hu R Z, Gao S L, Zhao F Q. Kinetics of Thermal Analysis[M]. 2nd ed. Beijing: Science Press, 2008. | |
35 | 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. |
Xie K C. Structure and Reactivity of Coal[M]. Beijing: Science Press, 2002. | |
36 | Brown M E, Galwey A K. The significance of “compensation effects” appearing in data published in “computational aspects of kinetic analysis”: ICTAC project, 2000[J]. Thermochimica Acta, 2002, 387(2): 173-183. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[3] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[4] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[7] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[8] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[9] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[10] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[11] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[12] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[13] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[14] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[15] | Xue LI, Ming DONG, Huang ZHANG, Jun XIE. Kinetic characteristics of micro-particle impact on a flat surface under humidity conditions [J]. CIESC Journal, 2022, 73(5): 1940-1946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||