CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1894-1903.DOI: 10.11949/j.issn.0438-1157.20181386
• Energy and environmental engineering • Previous Articles Next Articles
Rubin ZHAO(),Meng CAI,Yuxia PANG()
Received:
2018-11-20
Revised:
2018-12-18
Online:
2019-05-05
Published:
2019-05-05
Contact:
Yuxia PANG
通讯作者:
庞煜霞
作者简介:
<named-content content-type="corresp-name">赵汝斌</named-content>(1994—),男,硕士研究生,<email>445497124@qq.com</email>|庞煜霞(1975—),女,博士,副研究员,<email>ceyxpang@scut.edu.cn</email>
基金资助:
CLC Number:
Rubin ZHAO, Meng CAI, Yuxia PANG. Effects of dialysis and acid precipitation treatment on physicochemical properties of alkali lignin and its lead ions removal properties[J]. CIESC Journal, 2019, 70(5): 1894-1903.
赵汝斌, 蔡猛, 庞煜霞. 碱溶透析和酸析处理对碱木质素物化性质和Pb2+去除性能的影响[J]. 化工学报, 2019, 70(5): 1894-1903.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181386
Sample | C/% | H/% | N/% | S/% | Lignin/% | Cellulose/% | Ash/% | Phenolic hydroxyl content/(mmol·g-1) | Carboxyl group content/(mmol·g-1) | M w/(g·mol-1) |
---|---|---|---|---|---|---|---|---|---|---|
AL | 60.03 | 5.65 | 1.31 | 0.55 | 63.64 | <1 | 2.42 | 1.76 | 1.63 | 3800 |
SX-AL | 58.65 | 5.08 | 0.06 | 0.66 | 64.91 | <1 | 0.90 | 2.14 | 1.94 | 4300 |
TX-AL | 58.00 | 5.13 | 0.08 | 0.42 | 74.30 | <1 | 0.34 | 2.27 | 2.21 | 4500 |
Table 1 Effect of alkali-dialysis and alkali-acid precipitation on element and components of lignin
Sample | C/% | H/% | N/% | S/% | Lignin/% | Cellulose/% | Ash/% | Phenolic hydroxyl content/(mmol·g-1) | Carboxyl group content/(mmol·g-1) | M w/(g·mol-1) |
---|---|---|---|---|---|---|---|---|---|---|
AL | 60.03 | 5.65 | 1.31 | 0.55 | 63.64 | <1 | 2.42 | 1.76 | 1.63 | 3800 |
SX-AL | 58.65 | 5.08 | 0.06 | 0.66 | 64.91 | <1 | 0.90 | 2.14 | 1.94 | 4300 |
TX-AL | 58.00 | 5.13 | 0.08 | 0.42 | 74.30 | <1 | 0.34 | 2.27 | 2.21 | 4500 |
Fig.1 Effect of alkali-dialysis and alkali-acid precipitation on surface area, oxygen content and hydrophilicity of lignin(Insets show contact angle of water on SX-AL and TX-AL film)
Sample | Sample mass/mg | Lignin mass/mg | Removal rate/% | Removal capacity /(mg·g-1) |
---|---|---|---|---|
SX-AL | 30 | 19.5 | 23.6 | 39.3 |
SX-AL | 40 | 26.0 | 31.4 | 39.2 |
SX-AL | 50 | 32.4 | 38.9 | 38.8 |
TX-AL | 30 | 22.3 | 81.8 | 136.0 |
Table 2 Effects of SX-AL mass on removal capacity and removal rate
Sample | Sample mass/mg | Lignin mass/mg | Removal rate/% | Removal capacity /(mg·g-1) |
---|---|---|---|---|
SX-AL | 30 | 19.5 | 23.6 | 39.3 |
SX-AL | 40 | 26.0 | 31.4 | 39.2 |
SX-AL | 50 | 32.4 | 38.9 | 38.8 |
TX-AL | 30 | 22.3 | 81.8 | 136.0 |
Adsorbent | Adsorption capacity/(mg·g-1) | Surface charge of lignin(pH=5.5)/(mmol·g-1) | Ref. |
---|---|---|---|
TX-AL | 136.0 | 0.79 | present study |
SAL | 165.4 | 1.00 | present study |
CMAL | 159.9 | 0.95 | present study |
aminated lignin | 60.5 | — | [10] |
modified lignin by amination and sulfomethylation | 53.9 | — | [11] |
modified lignin by amination, sulfomethylation and phenolation | 130.2 | — | [12] |
microwave-assisted carboxymethyl lignin | 323.6 | — | [14] |
polycondensation resins by lignin reaction with glucose | 194.6 | — | [15] |
lignin microspheres | 33.9 | — | [19] |
porous lignin-based sphere | 27.1 | — | [20] |
porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites | 223.8 | — | [21] |
lignin grafted carbon nanotubes | 235.0 | — | [22] |
chitin/lignin hybrid material | 91.7 | — | [31] |
Table 3 Removal capacities toward Pb(II) by some lignin-based adsorbent
Adsorbent | Adsorption capacity/(mg·g-1) | Surface charge of lignin(pH=5.5)/(mmol·g-1) | Ref. |
---|---|---|---|
TX-AL | 136.0 | 0.79 | present study |
SAL | 165.4 | 1.00 | present study |
CMAL | 159.9 | 0.95 | present study |
aminated lignin | 60.5 | — | [10] |
modified lignin by amination and sulfomethylation | 53.9 | — | [11] |
modified lignin by amination, sulfomethylation and phenolation | 130.2 | — | [12] |
microwave-assisted carboxymethyl lignin | 323.6 | — | [14] |
polycondensation resins by lignin reaction with glucose | 194.6 | — | [15] |
lignin microspheres | 33.9 | — | [19] |
porous lignin-based sphere | 27.1 | — | [20] |
porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites | 223.8 | — | [21] |
lignin grafted carbon nanotubes | 235.0 | — | [22] |
chitin/lignin hybrid material | 91.7 | — | [31] |
1 | Reddad Z , Gerente C , Andres Y , et al . Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies[J]. Environmental Science & Technology, 2002, 36(9): 2067-2073. |
2 | Babel S , Kurniawan T A . Low-cost adsorbents for heavy metals uptake from contaminated water: a review[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 219-243. |
3 | Mccarthy J L , Islam A . Lignin chemistry, technology and utilization: a brief history in lignin: historical, biological and materials perspeetives[C]// ACS Symposium Series 742. Washington, DC, 2000: 2-99. |
4 | Sarkanen K V , Ludwig C H . Lignins: Occurrence, Formation, Structure and Reactions[M]. New York: Wiley-Interscience, 1971. |
5 | Guo X , Zhang S , Shan X Q . Adsorption of metal ions on lignin[J]. Journal of Hazardous Materials, 2008, 151(1): 134-142. |
6 | Albadarin A B , Ala’a H , Al-Laqtah N A , et al . Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 20-30. |
7 | Deng Y , Feng X , Yang D , et al . π-π Stacking of the aromatic groups in lignosulfonates[J]. Bioresources, 2012, 7(1): 1109-1117. |
8 | Lindström T . The colloidal behaviour of kraft lignin[J]. Colloid and Polymer Science, 1980, 258(2): 168-173. |
9 | 曹胜磊, 耿增超, 王月玲, 等 . 化学改性提高木质素水溶性及其对Zn2+的络合能力[J]. 农业环境科学学报, 2016, 35(11): 2216-2223. |
Cao S L , Geng Z C , Wang Y L , et al . Modification of lignin for improvement it's water-soluble property and ability to complex Zn2+ [J]. Journal of Agro-Environment Science, 2016, 35(11): 2216-2223. | |
10 | Ge Y , Song Q , Li Z . A mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 228-234. |
11 | Ge Y , Li Z , Kong Y , et al . Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4429-4436. |
12 | Wang B , Wen J L , Sun S L , et al . Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II)[J]. Industrial Crops and Products, 2017, 108: 72-80. |
13 | 庞煜霞, 蔡猛, 楼宏铭 . 磷酸化木质素的合成及对铅离子的去除性能[J]. 华南理工大学学报 (自然科学版), 2017, 45(6): 96-102. |
Pang Y X , Cai M , Lou H M . Preparation and Pb2+ removal capacity of phosphorylated lignin[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(6): 96-102. | |
14 | Li Y , Zhao R , Pang Y , et al . Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 187-194. |
15 | Liang F B , Song Y L , Huang C P , et al . Synthesis of novel lignin-based ion-exchange resin and its utilization in heavy metals removal[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1267-1274. |
16 | 李爱阳, 唐有根 . 接枝共聚木质素絮凝处理电镀废水中的重金属离子[J].环境工程学报, 2008, 2(5): 611-614. |
Li A Y , Tang Y G . Treatment of heavy metal ions in electroplating wastewater by flocculation with graft copolymerization lignosulfonate[J]. Chinese Journal of Environmental Engineering, 2008, 2(5): 611-614. | |
17 | Gao Y , Yue Q , Gao B , et al . Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption[J]. Chemical Engineering Journal, 2013, 217: 345-353. |
18 | Maldhure A V , Ekhe J D . Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption[J]. Chemical Engineering Journal, 2011, 168(3): 1103-1111. |
19 | Ge Y , Qin L , Li Z . Lignin microspheres: an effective and recyclable natural polymer-based adsorbent for lead ion removal[J]. Materials & Design, 2016, 95: 141-147. |
20 | Li Z , Ge Y , Wan L . Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media[J]. Journal of Hazardous Materials, 2015, 285: 77-83. |
21 | Ma Y , Lyu L , Guo Y , et al . Porous lignin based poly(acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb(II) ions[J]. Polymer, 2017, 128: 12-23. |
22 | Li Z , Chen J , Ge Y . Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes[J]. Chemical Engineering Journal, 2017, 308: 809-817. |
23 | 贺政 . 不同来源工业木质素的化学改性及对农药WP和WG的分散作用研究[D]. 广州: 华南理工大学, 2015. |
He Z . Chemical modification of technical lignin from different sources and the dispersion performance in pesticide WP and WG formulation [D]. Guangzhou: South China University of Technology, 2015. | |
24 | 温伟能 . 木浆黑液的羧甲基化改性及在三种农药制剂中的应用研究[D]. 广州: 华南理工大学, 2013. |
Wen W N . Study on the application of black liquor modified by carboxymethylation in three pesticide formulations[D]. Guangzhou: South China University of Technology, 2013. | |
25 | Scarlata C , Sluiter J , Templeton D , et al . Determination of structural carbohydrates and lignin in biomass: National Renewable Energy Laboratory-NREL/TP-510-42618. Laboratory Analytical Procedure (LAP) [R]. Golden, Co, 2011. |
26 | Li H , Chai X S , Liu M , et al . Novel method for the determination of the methoxyl content in lignin by headspace gas chromatography[J]. Journal of Agricultural and Food Chemistry, 2012, 60(21): 5307-5310. |
27 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 . 造纸原料、纸浆、纸和纸板 灰分的测定: GB/T 742—2008[S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China . Fibrous raw material, pulp, paper and board—Determination of ash: GB/T 742—2008[S]. Beijing: Standards Press of China, 2008. | |
28 | Butler J P , Czepiel T P . Determination of phenolic groups in lignin preparations titration with potassium methoxide using dimethylformamide as a solvent[J]. Analytical Chemistry, 1956, 28(9): 1468-1472. |
29 | Zhou M , Wang W , Yang D , et al . Preparation of a new lignin-based anionic/cationic surfactant and its solution behaviour[J]. RSC Advances, 2015, 5(4): 2441-2448. |
30 | Adebayo M A , Prola L D T , Lima E C , et al . Adsorption of procion blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese[J]. Journal of Hazardous Materials, 2014, 268(3): 43-50. |
31 | Bartczak P , Ł Klapiszewski , Wysokowski M , et al . Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent[J]. Journal of Environmental Management, 2017, 204: 300-310. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[3] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[4] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[5] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[6] | Xinlong YAN, Zhigang HUANG, Qingxun HU, Xin ZHANG, Xiaoyan HU. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon [J]. CIESC Journal, 2023, 74(3): 1102-1112. |
[7] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[8] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[9] | Jiangli WANG, Min XUE, Chengke ZHAO, Fengxia YUE. Influences of lignin fractionation on its utilization [J]. CIESC Journal, 2022, 73(5): 1894-1907. |
[10] | Xinjie GAO, Zaizhou XU, Yongzhen PENG, Yuwei HUANG, Jing DING, Zeming AN, Chuanxin WANG. Enhance nitrogen removal via endogenous denitrification in a sludge double recirculation-anaerobic/aerobic/anoxic process [J]. CIESC Journal, 2022, 73(11): 5098-5105. |
[11] | Li ZHANG, Jianhua WU, Shuhui CUI, Feng YAN, Hao SUN, Feiyue QIAN. Analysis of bacterial function in combined PN/A granular sludge and solid phase denitrification processes [J]. CIESC Journal, 2022, 73(11): 5128-5137. |
[12] | Xi ZHENG, Tao WANG, Yongsheng REN, Zhenzhen ZHAO, Xueqi WANG, Zhiping ZHAO. Preparation and properties research of poly(m-phenylene isophthalamide) flat-sheet membrane [J]. CIESC Journal, 2022, 73(10): 4707-4721. |
[13] | Pengbo FU,Jinyi TIAN,Wenjie LYU,Yuan HUANG,Yi LIU,Hao LU,Qiang YANG,Guangli XIU,Hualin WANG. Physical water treatment technology [J]. CIESC Journal, 2022, 73(1): 59-72. |
[14] | Liting HUANG, Xushen HAN, Yan JIN, Qiang MA, Jianguo YU. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment [J]. CIESC Journal, 2021, 72(9): 4881-4891. |
[15] | Liang SHAN, Rongqiang YIN, Hui WANG, Chuanjun FEI, Qingqing ZHOU, Jie XU, Zhiqiang WANG, Tao XU, Jianjun CHEN, Junhua LI. Preparation of VMoTi/glass fiber catalytic filter-cloth and research on its dust and NOx synergistic removal performance [J]. CIESC Journal, 2021, 72(9): 4892-4899. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||