CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1614-1619.DOI: 10.11949/j.issn.0438-1157.20181107

• Festschrift in Honor of Professor Gordon McKay on occasion of his retirement • Previous Articles     Next Articles

Mechanisms of degradation of MB by Fe2+/H2O2 system and the influencing factors

Zhonghua WANG(),Mingqi HE,Xue YANG,Haiqian ZHAO,Xiaoyan LIU,Yang LIU()   

  1. School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2018-09-29 Revised:2018-12-19 Online:2019-04-05 Published:2019-04-05
  • Contact: Yang LIU

Fe2+/H2O2体系降解MB机制及影响因素研究

王忠华(),何明祺,杨雪,赵海谦,刘晓燕,刘扬()   

  1. 东北石油大学土木建筑工程学院,黑龙江 大庆 163318
  • 通讯作者: 刘扬
  • 作者简介:<named-content content-type="corresp-name">王忠华</named-content>(1979—),女,博士,副教授,<email>wangzhonghua0725@163.com</email>|刘扬(1957—),男,博士生导师,教授,<email>ly001nepu@163.com</email>
  • 基金资助:
    国家自然科学基金项目(51606036);黑龙江省自然科学基金青年项目(QC2014C047);黑龙江省教育厅项目(UNPYSCT-2016085)

Abstract:

Using methylene blue (MB) as the target pollutant, the active substances of MB degradation in Fe2+/H2O2 system were studied experimentally. The influence characteristics of main reaction conditions on MB degradation were clarified. The results showed that HO2· had no ability to directly degrade MB and the capacity of the Fe2+/H2O2 system for MB degradation mainly came from ·OH radicals. The degradation of MB by Fe2+/H2O2 system can be divided into a rapid reaction stage and a uniform reaction stage. The MB degradation ratio in the rapid reaction phase decreased with the increase in temperature. The degradation ability of MB in the system increased first and then decreased with the increase of the initial concentration of H2O2. Under this experimental conditions, the optimal initial concentration of H2O2 was 5 mmol·L-1. The degradation capacity of MB in the system increased monotonously with the inerease of Fe2+ initial concentration. The degradation rate of MB increased with the increase of initial concentration of MB, but the degradation ratio of MB increased first and then decreased with it. Ensuring the rate of ·OH production and its effective utilization are key to improving the oxidizing ability of the system and the utilization of H2O2.

Key words: Fe2+/H2O2 system, methylene blue, degradation, active substances, ·OH

摘要:

以亚甲基蓝(MB)作为目标污染物,实验研究了Fe2+/H2O2体系降解MB的活性物质,明确了主要反应条件对MB降解的影响特性。结果表明:HO2?没有直接降解MB的能力;Fe2+/H2O2体系对MB的降解能力主要来自于?OH;Fe2+/H2O2体系降解MB可分为快速反应阶段和匀速反应阶段。快速反应阶段的MB降解率随温度升高而下降。体系对MB降解能力随H2O2初始浓度增加呈现先升高后减弱的趋势,本实验条件下,最佳H2O2初始浓度为5 mmol·L-1。体系对MB降解能力随Fe2+初始浓度的增加而单调增加。MB降解速率随MB初始浓度的增加而增加,但MB降解率随其初始浓度呈现先增大后减小的趋势。保证?OH生成速率及其有效利用是提高体系氧化能力及H2O2利用率的关键。

关键词: Fe2+/H2O2体系, 亚甲基蓝, 降解, 活性物质, ?OH

CLC Number: