CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 548-555.DOI: 10.11949/j.issn.0438-1157.20181373
• Process system engineering • Previous Articles Next Articles
Hengchang GU1(),Peng MU2,3,Jianwei LI1()
Received:
2018-11-19
Revised:
2018-12-11
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jianwei LI
通讯作者:
李建伟
作者简介:
<named-content content-type="corresp-name">顾恒昌</named-content>(1992—),男,博士研究生,<email>guhengchang@126.com</email>|李建伟(1964—),男,博士,教授,<email>lijw@mail.buct.edu.cn</email>
基金资助:
CLC Number:
Hengchang GU, Peng MU, Jianwei LI. Modeling and application of ethylene cracking furnace based on cross-iterative BLSTM network[J]. CIESC Journal, 2019, 70(2): 548-555.
顾恒昌, 牟鹏, 李建伟. 基于交叉迭代BLSTM网络的乙烯裂解炉建模[J]. 化工学报, 2019, 70(2): 548-555.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181373
Structure parameters | Value | Operation parameters | Value |
---|---|---|---|
furnace tube group | 6 | feedstock flow/(kg/h) | 890.625 |
tube pass | 2 | steam/hydrocarbon ratio | 0.60 |
arrangement | 16/8 | coil inlet temperature/K | 875 |
inner diameter/m | 0.051/0.073 | coil outlet temperature/K | 1122 |
outer diameter/m | 0.063/0.086 | coil outlet pressure/kPa | 178 |
length/m | 13.681/14.921 | ||
tube pitch/m | 0.112/0.154 |
Table 1 Structure parameters and operation parameters of cracking furnace
Structure parameters | Value | Operation parameters | Value |
---|---|---|---|
furnace tube group | 6 | feedstock flow/(kg/h) | 890.625 |
tube pass | 2 | steam/hydrocarbon ratio | 0.60 |
arrangement | 16/8 | coil inlet temperature/K | 875 |
inner diameter/m | 0.051/0.073 | coil outlet temperature/K | 1122 |
outer diameter/m | 0.063/0.086 | coil outlet pressure/kPa | 178 |
length/m | 13.681/14.921 | ||
tube pitch/m | 0.112/0.154 |
No. | Density,20℃/(g/cm3) | 10% boiling range/℃ | 30% boiling range/℃ | 50% boiling range/℃ | 70% boiling range/℃ | 90% boiling range/℃ | P | N | A | Lmn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.6927 | 54.5 | 73 | 90 | 107 | 127 | 0.7223 | 0.2234 | 0.0529 | 0 |
2 | 0.7255 | 86.9 | 105.4 | 121.3 | 137.3 | 156.5 | 0.663 | 0.2605 | 0.0762 | 1.382 |
3 | 0.7488 | 85.2 | 114.8 | 131.8 | 147.5 | 162.4 | 0.4631 | 0.4856 | 0.0483 | 1.7751 |
4 | 0.7022 | 60 | 75 | 88.5 | 103 | 124 | 0.7069 | 0.2248 | 0.0566 | 2.1174 |
5 | 0.7103 | 64 | 81 | 98 | 117 | 143 | 0.6669 | 0.2605 | 0.068 | 2.5121 |
6 | 0.7389 | 77 | 106 | 135 | 163 | 190 | 0.6898 | 0.1916 | 0.116 | 2.9868 |
7 | 0.7093 | 69 | 88 | 103 | 119 | 149 | 0.6409 | 0.3172 | 0.0419 | 0.0023 |
8 | 0.7375 | 85.2 | 105 | 120.3 | 136.2 | 156.1 | 0.5609 | 0.3493 | 0.0893 | 0.0092 |
9 | 0.6894 | 36.2 | 46.9 | 65 | 104.7 | 137.6 | 0.7379 | 0.1742 | 0.0864 | 0.0133 |
No. | Density,20℃/(g/cm3) | 10% boiling range/℃ | 30% boiling range/℃ | 50% boiling range/℃ | 70% boiling range/℃ | 90% boiling range/℃ | P | N | A | Lmn |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.6927 | 54.5 | 73 | 90 | 107 | 127 | 0.7223 | 0.2234 | 0.0529 | 0 |
2 | 0.7255 | 86.9 | 105.4 | 121.3 | 137.3 | 156.5 | 0.663 | 0.2605 | 0.0762 | 1.382 |
3 | 0.7488 | 85.2 | 114.8 | 131.8 | 147.5 | 162.4 | 0.4631 | 0.4856 | 0.0483 | 1.7751 |
4 | 0.7022 | 60 | 75 | 88.5 | 103 | 124 | 0.7069 | 0.2248 | 0.0566 | 2.1174 |
5 | 0.7103 | 64 | 81 | 98 | 117 | 143 | 0.6669 | 0.2605 | 0.068 | 2.5121 |
6 | 0.7389 | 77 | 106 | 135 | 163 | 190 | 0.6898 | 0.1916 | 0.116 | 2.9868 |
7 | 0.7093 | 69 | 88 | 103 | 119 | 149 | 0.6409 | 0.3172 | 0.0419 | 0.0023 |
8 | 0.7375 | 85.2 | 105 | 120.3 | 136.2 | 156.1 | 0.5609 | 0.3493 | 0.0893 | 0.0092 |
9 | 0.6894 | 36.2 | 46.9 | 65 | 104.7 | 137.6 | 0.7379 | 0.1742 | 0.0864 | 0.0133 |
物质 | 目标产量/%(质量) | 预测收率/%(质量) | 误差/% |
---|---|---|---|
H2 | 12.36 | 12.10 | 2.19 |
CH4 | 22.48 | 22.27 | 0.93 |
C2H4 | 22.54 | 22.35 | 0.81 |
C2H6 | 4.67 | 4.60 | 1.38 |
C3H6 | 9.86 | 9.86 | 0.00 |
C3H8 | 4.42 | 4.00 | 10.51 |
C4H10 | 5.32 | 5.14 | 3.58 |
C4H8 | 6.45 | 6.14 | 4.94 |
C4H6 | 3.03 | 2.82 | 7.24 |
C4' | 5.25 | 5.13 | 2.36 |
Table 3 Test results of naphtha 9
物质 | 目标产量/%(质量) | 预测收率/%(质量) | 误差/% |
---|---|---|---|
H2 | 12.36 | 12.10 | 2.19 |
CH4 | 22.48 | 22.27 | 0.93 |
C2H4 | 22.54 | 22.35 | 0.81 |
C2H6 | 4.67 | 4.60 | 1.38 |
C3H6 | 9.86 | 9.86 | 0.00 |
C3H8 | 4.42 | 4.00 | 10.51 |
C4H10 | 5.32 | 5.14 | 3.58 |
C4H8 | 6.45 | 6.14 | 4.94 |
C4H6 | 3.03 | 2.82 | 7.24 |
C4' | 5.25 | 5.13 | 2.36 |
石脑油编号 | C2H4 产量/%(质量) | C2H4预测收率/%(质量) | C2H4误差/% | C3H6 产量/%(质量) | C3H6预测收率/%(质量) | C3H6误差/% |
---|---|---|---|---|---|---|
2 | 31.78 | 30.66 | 3.51 | 9.87 | 9.95 | 0.90 |
3 | 31.56 | 30.54 | 3.22 | 10.53 | 10.7 | 1.66 |
4 | 30.22 | 29.23 | 3.27 | 13.61 | 13.9 | 2.16 |
5 | 30.63 | 29.18 | 4.76 | 9.95 | 9.94 | 0.05 |
6 | 29.08 | 19.14 | 34.19 | 9.44 | 9.07 | 3.96 |
Table 4 Test results of other naphtha
石脑油编号 | C2H4 产量/%(质量) | C2H4预测收率/%(质量) | C2H4误差/% | C3H6 产量/%(质量) | C3H6预测收率/%(质量) | C3H6误差/% |
---|---|---|---|---|---|---|
2 | 31.78 | 30.66 | 3.51 | 9.87 | 9.95 | 0.90 |
3 | 31.56 | 30.54 | 3.22 | 10.53 | 10.7 | 1.66 |
4 | 30.22 | 29.23 | 3.27 | 13.61 | 13.9 | 2.16 |
5 | 30.63 | 29.18 | 4.76 | 9.95 | 9.94 | 0.05 |
6 | 29.08 | 19.14 | 34.19 | 9.44 | 9.07 | 3.96 |
1 | Kumar P , Kunzru D . Modeling of naphtha pyrolysis[J]. Industrial & Engineering Chemistry Process Design & Development, 1985, 24: 774-782. |
2 | Sadrameli S M . Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review (I): Thermal cracking review[J]. Fuel, 2015,140: 102-115. |
3 | Keyvanloo K , Sedighi M , Towfighi J . Genetic algorithm model development for prediction of main products in thermal cracking of naphtha: comparison with kinetic modeling[J]. Chemical Engineering Journal, 2012, 209: 255-262. |
4 | Hua F , Zhou F , Tong Q . Modeling ethylene cracking process by learning convolutional neural networks[J]. Computer Aided Chemical Engineering, 2018, 44: 841-846. |
5 | Yuan B , Li J , Du W , et al . Study on co-cracking performance of different hydrocarbon mixture in a steam pyrolysis furnace[J]. Chinese Journal of Chemical Engineering, 2016, 24: 1252-1262. |
6 | Zhou F , Qiu T , Chen B Z . Analyzing and modeling ethylene cracking process with complex networks approach[J]. Computer Aided Chemical Engineering, 2015, 37: 407-412. |
7 | Zhou F , Qiu T , Chen B Z . Improvement of ethylene cracking reaction network with network flow analysis algorithm[J]. Computers & Chemical Engineering, 2016, 91: 182-194. |
8 | Hu G H .Coupled simulation of convection section with dual stage steam feed mixing of an industrial ethylene cracking furnace[J]. Chemical Engineering Journal, 2016, 286:436-446. |
9 | 高荣华 .《化工原理》课程中的微分方程问题[J]. 扬州职业大学学报, 1999, 3(3):45-47. |
Gao R H . Differential equation in the course of chemical engineering theory[J]. Journal of Yangzhou Polytechnic College, 1999, 3(3): 45-47. | |
10 | 沙利, 张红梅, 高金森,等 . 乙烯裂解炉管内流动反应历程的数值模拟(Ⅰ): 二维流动反应数学模型的建立[J]. 化工学报, 2003, 54(3): 392-397. |
Sha L , Zhang H M , Gao J S , et al . Numerical simulation on flow-reaction progress in tubular reactor of steam crackers(Ⅰ):Develoment of two-dimensional flow-reaction model[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(3): 392-397. | |
11 | 华丰, 方舟, 邱彤 . 乙烯裂解炉反应与传热耦合的智能混合建模与模拟[J]. 化工学报, 2018, 69(3): 923-930. |
Hua F , Fang Z , Qiu T . Recirculation and reaction hybrid intelligent modeling and simulation for industrial ethylene cracking furnace[J]. CIESC Journal, 2018, 69(3): 923-930. | |
12 | Williams G , Baxter R , He H X , et al . A comparative study of RNN for outlier detection in data mining[C]//IEEE International Conference on Data Mining, 2002. Proceedings, Maebashi, Japan: IEEE, 2002: 709-712. |
13 | Sak H , Senior A , Beaufays F . Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]//Fifteenth Annual Conference of the International Speech Communication Association. Singapore: Interspeech, 2014. |
14 | Greff K , Srivastava R K , Koutnik J , et al . LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 28: 2222-2232. |
15 | Sainath T N , Vinyals O , Senior A , et al . Convolutional, long short-term memory, fully connected deep neural networks[C]//Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE, Brisbane, QLD, Australia: IEEE, 2015: 4580-4584. |
16 | 彭敏, 杨绍雄, 朱佳晖 . 基于双向LSTM语义强化的主题建模[J]. 中文信息学报, 2018, 32(4): 40-49. |
Peng M , Yang S X , Zhu J H . Semantic enhanced topic modeling by bi-directional LSTM[J]. Journal of Chinese Information Progressing, 2018, 32(4): 40-49. | |
17 | 李泽龙, 杨春节, 刘文辉, 等 . 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018,69(3): 992-997. |
Li Z L , Yang C J , Liu W H , et al . Research on hot metal Si-content prediction based on LSTM-RNN[J]. CIESC Journal, 2018, 69(3): 992-997. | |
18 | Zhang X , Zou Y , Li S , et al . Product yields forecasting for fccu via deep bi-directional LSTM network[C] //2018 37th Chinese Control Conference (CCC). IEEE, 2018: 8013-8018. |
19 | Lefebvre G , Berlemont S , Mamalet F , et al . BLSTM-RNN based 3D gesture classification[C]//International Conference on Artificial Neural Networks. Heidelberg, Berlin: Springer, 2013: 381-388. |
20 | Hakkani-Tür D , Tür G , Celikyilmaz A , et al . Multi-domain joint semantic frame parsing using bi-directional RNN-LSTM[C]//Proceedings of the 17th Annual Meeting of the International Speech Communication Association (INTERSPEECH 2016). Baixas, France: ISCA 2016: 715-719. |
21 | Yao Y , Huang Z . Bi-directional LSTM recurrent neural network for Chinese word segmentation[C]//International Conference on Neural Information Processing. Cham: Springer, 2016: 345-353. |
22 | Wang P , Qian Y , Zhao H , et al . Learning distributed word representations for bidirectional LSTM recurrent neural network[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 527-533. |
23 | 马涛 . 组合预测方法及其应用研究[D]. 兰州: 兰州大学, 2017. |
Ma T . A research on combining forecasting methods and its applications[D]. Lanzhou: Lanzhou University, 2017. | |
24 | 韩昭蓉, 黄廷磊, 任文娟, 等 . 基于Bi-LSTM模型的轨迹异常点检测算法[J]. 雷达学报, 2018, (5):1-8. |
Han Z R , Huang T L , Ren W J ,et al . Trajectory outlier detection algorithm based on bi-LSTM Model[J].Journal of Radars, 2018, (5): 1-8. | |
25 | 张利军, 张永刚, 王国清, 等 . 石脑油的组成预测方法[J]. 化工进展, 2011, 30(2): 278-283. |
Zhang L J , Zhang Y G , Wang G Q , et al . Rearch on prediciton of naphtha composition based on commerical indices[J]. Chemical Industry and Engineering Progress, 2011, 30(2): 278-283. | |
26 | 张杰, 黄翔, 李泷杲,等 . 基于T-scan测量的薄壁钣金件孔特征重构[J]. 工程科学学报, 2017, 39(6): 917-923. |
Zhang J , Huang X , Li S G . Hole feature reconstruction of thin-walled sheet metal parts based on T-scan measurement[J]. Chinese Journal of Engineering, 2017, 39(6): 917-923. | |
27 | 王飞 . 乙烯装置中碳二加氢反应器的稳态、动态建模与优化[D]. 上海: 华东理工大学, 2012. |
Wang F . Steady-state, dynamic simulation and optimization of acetylene hydrogenation reactor in ethylene plant[D]. Shanghai: East China University of Science and Technolog, 2012. | |
28 | Prokhorov D V , Si J , Barto A , et al . Handbook of Learning and Approximate Dynamic Programming: Chapter 15 BPTT and DAC -A Common Framework for Comparison[M]. USA: John Wiley & Sons, Inc., Online library,2012. |
29 | 邵研硕 . 乙烯生产过程能效监测系统预测评估模块实现[D]. 大连: 大连理工大学, 2017. |
Zhao Y S . The implementation of forecast evaluation module in the ethylene production process inspection system of energy efficiency[D]. Dalian: Dalian University of Technology, 2017. | |
30 | 耿志强, 陈杰, 韩永明 . 基于模糊RBF神经网络的乙烯装置生产能力预测[J]. 化工学报, 2016, 67(3): 812-819. |
Geng Z Q , Chen J , Han Y M . Ethylenen plants production capacity forecast based on fuzzy RBF neural network[J]. CIESC Journal, 2016, 67(3): 812-819. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[7] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[8] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[9] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[10] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[11] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[12] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[13] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[14] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[15] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||