CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1858-1867.DOI: 10.11949/j.issn.0438-1157.20181245
• Process system engineering • Previous Articles Next Articles
Wu SU(),Xiaogang SHI,Yingya WU,Jinsen GAO,Xingying LAN()
Received:
2018-10-22
Revised:
2019-02-21
Online:
2019-05-05
Published:
2019-05-05
Contact:
Xingying LAN
通讯作者:
蓝兴英
作者简介:
<named-content content-type="corresp-name">苏武</named-content>(1993—),男,博士研究生,<email>suwucup@163.com</email>|蓝兴英(1977—),女,博士,教授,<email>lanxy@cup.edu.cn</email>
基金资助:
CLC Number:
Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed[J]. CIESC Journal, 2019, 70(5): 1858-1867.
苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181245
项目 | 催化剂量/kg | 催化剂浓度/%(vol) | 气体流量/(m3/h) | 入口H2:C2H2 (vol.) | 压力/kPa | 温度/℃ |
---|---|---|---|---|---|---|
小试装置 | 0.002 | 2.4 | 0.09 | 4:01 | 101 | 150 |
中试装置 | 13 | 2 | 165, 300 | 4.45:1 | 450 | 123, 140 |
Table 1 Equipment parameters and operating conditions
项目 | 催化剂量/kg | 催化剂浓度/%(vol) | 气体流量/(m3/h) | 入口H2:C2H2 (vol.) | 压力/kPa | 温度/℃ |
---|---|---|---|---|---|---|
小试装置 | 0.002 | 2.4 | 0.09 | 4:01 | 101 | 150 |
中试装置 | 13 | 2 | 165, 300 | 4.45:1 | 450 | 123, 140 |
项目 | 网格数/万 | 床层平均气含率 | 乙炔转化率/% | 乙烯选择性/% |
---|---|---|---|---|
小试装置[border:border-top:solid;] | 0.54 | 0.112 | 93.49 | 97.42 |
1.15 | 0.118 | 93.08 | 95.13 | |
3.56 | 0.120 | 93.36 | 95.75 | |
中试装置 | 4.5 | 0.211 | 97.84 | 91.42 |
24 | 0.203 | 99.43 | 85.88 | |
34 | 0.207 | 99.65 | 89.60 |
Table 2 Mesh independency
项目 | 网格数/万 | 床层平均气含率 | 乙炔转化率/% | 乙烯选择性/% |
---|---|---|---|---|
小试装置[border:border-top:solid;] | 0.54 | 0.112 | 93.49 | 97.42 |
1.15 | 0.118 | 93.08 | 95.13 | |
3.56 | 0.120 | 93.36 | 95.75 | |
中试装置 | 4.5 | 0.211 | 97.84 | 91.42 |
24 | 0.203 | 99.43 | 85.88 | |
34 | 0.207 | 99.65 | 89.60 |
项目 | 床层整体气含率 | C2H2转化率/% | C2H4选择性/% |
---|---|---|---|
实验结果 | 0.125 | 100 | 95.51 |
模拟结果 | 0.118 | 93.08 | 95.13 |
Table 3 Comparisons between simulation results and experimental data in lab-scale equipment
项目 | 床层整体气含率 | C2H2转化率/% | C2H4选择性/% |
---|---|---|---|
实验结果 | 0.125 | 100 | 95.51 |
模拟结果 | 0.118 | 93.08 | 95.13 |
项目 | 工况1 | 工况2 | ||
---|---|---|---|---|
实验结果 | 模拟结果 | 实验结果 | 模拟结果 | |
温度/℃ | 140 | 123 | ||
气体流量/(m3/h) | 300 | 165 | ||
床层平均气含率 | 0.19 | 0.20 | — | 0.12 |
C2H2转化率/% | 98.71 | 99.43 | 98.34 | 90.91 |
C2H4选择性/% | 91.04 | 85.88 | 92.14 | 85.24 |
Table 4 Comparisons between simulation results and experimental data in bench-scale equipment
项目 | 工况1 | 工况2 | ||
---|---|---|---|---|
实验结果 | 模拟结果 | 实验结果 | 模拟结果 | |
温度/℃ | 140 | 123 | ||
气体流量/(m3/h) | 300 | 165 | ||
床层平均气含率 | 0.19 | 0.20 | — | 0.12 |
C2H2转化率/% | 98.71 | 99.43 | 98.34 | 90.91 |
C2H4选择性/% | 91.04 | 85.88 | 92.14 | 85.24 |
项目 | C2H2转化率/% | C2H4选择性/% |
---|---|---|
工况1 | 99.43 | 85.88 |
工况3 | 99.99 | 69.49 |
Table 5 Conversion of C2H2 and selectivity of C2H4 at outlet
项目 | C2H2转化率/% | C2H4选择性/% |
---|---|---|
工况1 | 99.43 | 85.88 |
工况3 | 99.99 | 69.49 |
1 | 段东红, 刘世斌, 李一兵, 等 . 一种乙炔加氢制乙烯的浆态床工艺及其装置: 102489225A[P]. 2011-12-10. |
Duan D H , Liu S B , Li Y B , et al . A slurry bed reactor for the selective hydrogenation of acetylene: 102489225A[P]. 2011-12-10. | |
2 | 陈艳君, 陈吉祥 . 乙炔选择加氢催化剂研究进展[J]. 化学工业与工程, 2017, 34(4): 18-26. |
Chen Y J , Chen J X . Advances in catalysts for selective hydrogenation of acetylene[J]. Chemical Industry and Engineering, 2017, 34(4): 18-26. | |
3 | 张东平, 王功华 . 乙炔加氢反应器的模拟与分析[J]. 石油化工, 2003, 32(5): 414-417. |
Zhang D P , Wang G H . Simulation and analysis of reactor for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2003, 32(5): 414-417. | |
4 | Borodzinski A , Cybulski A . The kinetic model of hydrogenation of acetylene–ethylene mixtures over palladium surface covered by carbonaceous deposits[J]. Applied Catalysis A: General, 2000, 198(1/2): 51-66. |
5 | Sarkany A . Formation of C4 oligomers in hydrogenation of acetylene over Pd/Al2O3 and Pd/TiO2 catalysts[J]. Reaction Kinetics and Catalysis Letters, 2001, 74(2): 299-307. |
6 | Edvinsson R K , Holmgren A M , Irandoust S . Liquid-phase hydrogenation of acetylene in a monolithic catalyst reactor[J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 94-100. |
7 | Ruta M , Laurenczy G , Dyson P J , et al . Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions[J]. The Journal of Physical Chemistry C, 2008, 112(46): 17814-17819-. |
8 | Herrmann T , Rößmann L , Lucas M , et al . High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene[J]. Chemical Communications, 2011, 47(45): 12310-12312. |
9 | Shitova N B , Shlyapin D A , Afonasenko T N , et al . Liquid-phase hydrogenation of acetylene on the Pd/sibunit catalyst in the presence of carbon monoxide[J]. Kinetics and Catalysis, 2011, 52(2): 251-257. |
10 | 余海鹏, 史雪君, 刘周恩, 等 . 用于乙炔选择性加氢制乙烯的浆态床反应器及反应系统: 104826558A[P]. 2015-08-05. |
Yu H P , Shi X J , Liu Z E , et al . A slurry bed reactor and reaction system for the selective hydrogenation of acetylene: 104826558A[P]. 2015-08-05. | |
11 | Hou R J , Wang T F , Lan X C . Enhanced selectivity in the hydrogenation of acetylene due to the addition of a liquid phase as a selective solvent[J]. Industrial & Engineering Chemistry Research, 2013, 52(37): 13305-13312. |
12 | Hou R J , Lan X C , Wang T F . Selective hydrogenation of acetylene on Pd/SiO2 in bulk liquid phase: a comparison with solid catalyst with ionic liquid layer (SCILL)[J]. Catalysis Today, 2015, 251: 47-52. |
13 | 余牛杰 . 浆态床高浓度乙炔选择加氢合成乙烯的研究[D]. 太原: 太原理工大学, 2012. |
Yu N J . Study on the performance of slurry reactor for ethylene synthesis by selective hydrogenation of acetylene[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
14 | Wang T F , Wang J F , Jin Y . Slurry reactors for gas-to-liquid processes: a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847. |
15 | 卢佳 . 浆态床费托合成反应器二维分布模型[D]. 杭州: 浙江大学, 2010. |
Lu J . Two-dimensional model of the slurry bubble column reactor for Fischer-Tropsch synthesis[D]. Hangzhou: Zhejiang University, 2010. | |
16 | Xu L J , Xia Z H , Guo X F , et al . Application of population balance model in the simulation of slurry bubble column[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4922-4930. |
17 | Pan H , Chen X Z , Liang X F , et al . CFD simulations of gas-liquid-solid flow in fluidized bed reactors—a review[J]. Powder Technology, 2016, 299: 235-258. |
18 | Li H , Prakash A . Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column[J]. Powder Technology, 2000, 113(1/2): 158-167. |
19 | Wang T F , Wang J F , Jin Y . Theoretical prediction of flow regime transition in bubble columns by the population balance model[J]. Chemical Engineering Science, 2005, 60(22): 6199-6209. |
20 | Ekambara K , Nandakumar K , Joshi J B . CFD simulation of bubble column reactor using population balance[J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 8505-8516. |
21 | Wang T F , Wang J F , Jin Y . Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models[J]. Industrial & Engineering Chemistry Research, 2005, 44(19): 7540-7549. |
22 | Guo X F , Zhou Q , Li J , et al . Implementation of an improved bubble breakup model for TFM-PBM simulations of gas–liquid flows in bubble columns[J]. Chemical Engineering Science, 2016, 152: 255-266. |
23 | Chen P , Sanyal J , Dudukovic M P . CFD modeling of bubble columns flows: implementation of population balance[J]. Chemical Engineering Science, 2004, 59(22/23): 5201-5207. |
24 | Laborde-Boutet C , Larachi F , Dromard N , et al . CFD simulation of bubble column flows: investigations on turbulence models in RANS approach[J]. Chemical Engineering Science, 2009, 64(21): 4399-4413. |
25 | Tomiyama A . Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4): 369-405. |
26 | Bhole M R , Joshi J B , Ramkrishna D . CFD simulation of bubble columns incorporating population balance modeling[J]. Chemical Engineering Science, 2008, 63(8): 2267-2282. |
27 | Tomiyama A , Tamai H , Zun I , et al . Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. |
28 | Fleischer C , Becker S , Eigenberger G . Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column[J]. Chemical Engineering Science, 1996, 51(10): 1715-1724. |
29 | 邢楚填 . 鼓泡床反应器实验研究及CFD-PBM耦合模型数值模拟[D]. 北京: 清华大学, 2014. |
Xing C T . Experimental study and numerical simulation of bubble column with a CFD-PBM coupled model[D]. Beijing: Tsinghua University, 2014. | |
30 | Luo H , Svendsen H F . Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
31 | Luo H . Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim: Norwegian University of Science and Technology, 1993. |
32 | 王功华 . 乙炔加氢动力学研究及反应器模拟计算[D]. 北京: 北京化工大学, 2003. |
Wang G H . Simulation and kinetic study of hydrogenation acetylene of acetylene [D]. Beijing: Beijing University of Chemical Technology, 2014. | |
33 | Kumar S B , Moslemian D , Duduković M P . Gas‐holdup measurements in bubble columns using computed tomography[J]. AIChE Journal, 1997, 43(6): 1414-1425. |
34 | Chen P , Sanyal J , Duduković M P . Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4): 1085-1101. |
35 | Chen P , Duduković M P , Sanyal J . Three‐dimensional simulation of bubble column flows with bubble coalescence and breakup[J]. AIChE Journal, 2005, 51(3): 696-712. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[3] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[4] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[5] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[6] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[7] | Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964. |
[8] | Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508. |
[9] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[10] | Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238. |
[11] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[12] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[13] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[14] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[15] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||