CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1858-1867.DOI: 10.11949/j.issn.0438-1157.20181245

• Process system engineering • Previous Articles     Next Articles

CFD simulation on hydrogenation of acetylene to ethylene in slurry bed

Wu SU(),Xiaogang SHI,Yingya WU,Jinsen GAO,Xingying LAN()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2018-10-22 Revised:2019-02-21 Online:2019-05-05 Published:2019-05-05
  • Contact: Xingying LAN

乙炔加氢制乙烯浆态床反应器的CFD模拟

苏武(),石孝刚,吴迎亚,高金森,蓝兴英()   

  1. 中国石油大学(北京)重质油国家重点实验室,北京 102249
  • 通讯作者: 蓝兴英
  • 作者简介:<named-content content-type="corresp-name">苏武</named-content>(1993—),男,博士研究生,<email>suwucup@163.com</email>|蓝兴英(1977—),女,博士,教授,<email>lanxy@cup.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(21622609,21808239)

Abstract:

The simulation of hydrogenation of acetylene in slurry reactor was carried out. The TFM-PBM coupling method was used to describe the flow of gas phase and slurry phase in slurry bed, and the kinetics of acetylene hydrogenation reaction was coupled to establish flow-reaction synthesis. The model was validated in a lab-scale slurry bed reactor and was then applied to the simulation of a bench-scale slurry bed reactor with respect to the function mechanisms of internals and the effects of operating conditions. Simulation results showed that vertical tube in the bench-scale reactor can break up bubbles and suppress the radial flow of gas phase, which benefits the uniform and sufficient conversion of acetylene. The conversion of acetylene is closely related to the residence time of gas phase and the reaction temperature. In order to obtain complete conversion of acetylene and high selectivity of ethylene when the slurry bed reactor was scaled-up to an industrial scale, it is critical to control the reaction temperature and the residence time of gas phase which can be regulated by changing the height of the liquid phase.

Key words: slurry bed, hydrogenation of acetylene, CFD, multiphase flow, multiphase reactor

摘要:

对浆态床反应器中乙炔加氢制乙烯过程进行了模拟研究,采用TFM-PBM耦合方法描述浆态床内气相与浆态相的流动,并耦合乙炔加氢反应动力学建立流动-反应综合模型。通过小试实验对该模型进行验证,并将验证后的模型应用于浆态床中试装置中内构件作用机制与操作条件影响的模拟分析。结果表明,在浆态床反应器放大时,可通过设置竖管内构件,以破碎气泡,抑制气相径向运动,使乙炔加氢过程均匀、充分地进行。乙炔加氢制乙烯过程与气相停留时间和反应温度密切相关,在反应器放大中需严格控制温度,并可通过改变反应器内液位高度实现对气相停留时间的调控,从而可在保证乙炔充分转化的同时获得更高的乙烯选择性。

关键词: 浆态床, 乙炔加氢, 计算流体力学, 多相流, 多相反应器

CLC Number: