CIESC Journal ›› 2019, Vol. 70 ›› Issue (6): 2060-2074.DOI: 10.11949/j.issn.0438-1157.20181398
• Reviews and monographs • Previous Articles Next Articles
Zhiguang YANG(),Xinmei JIANG,Chunyan CHENG,Chaosheng ZHU,Zhiqiang HOU
Received:
2018-11-22
Revised:
2019-03-04
Online:
2019-06-05
Published:
2019-06-05
Contact:
Zhiguang YANG
通讯作者:
杨志广
基金资助:
CLC Number:
Zhiguang YANG, Xinmei JIANG, Chunyan CHENG, Chaosheng ZHU, Zhiqiang HOU. Research progress of mitochondria-targeted fluorescent probes for ions[J]. CIESC Journal, 2019, 70(6): 2060-2074.
杨志广, 江鑫梅, 程春艳, 朱超胜, 侯志强. 线粒体靶向型离子荧光探针的研究进展[J]. 化工学报, 2019, 70(6): 2060-2074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181398
1 | Balaban R S , Nemoto S , Finkel T . Mitochondria, oxidants, and aging[J]. Cell, 2005, 120(4): 483-495. |
2 | Vakifahmetoglu-Norberg H , Ouchida A T , Norberg E . The role of mitochondria in metabolism and cell death[J]. Biochemical and Biophysical Research Communications, 2017, 482(3): 426-431. |
3 | Yousif L F , Stewart K M , Kelley S O . Targeting mitochondria with organelle-specific compounds: strategies and applications[J]. ChemBiochem, 2009, 10(12): 1939-1950. |
4 | Wu P , Zhao T , Wang S L , et al . Semicondutor quantum dots-based metal ion probes[J]. Nanoscale, 2014, 6(1): 43-64. |
5 | Lee M H , Kim J S , Sessler J L . Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules[J]. Chemical Society Reviews, 2015, 44(13): 4185-4191. |
6 | Vyas S , Zaganjor E , Haigis M C . Mitochondria and cancer[J]. Cell, 2016, 166(3): 555-566. |
7 | Zhao L M , Liu G , Zhang B F . A colorimetric and fluorescence enhancement anion probe based on coumarin compounds[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 169: 45-49. |
8 | Lim C S , Cho B R . Two-photon probes for biomedical applications [J]. BMB Reports, 2013, 46(4): 188-194. |
9 | Zhang P S , Wang H , Zhang D , et al . Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells[J]. Sensors and Actuators B: Chemical, 2018, 255: 2223-2231. |
10 | 姜娜, 樊江莉, 杨洪宝, 等 . 线粒体荧光探针最新研究进展[J]. 化工学报, 2016, 67(1): 176-190. |
Jiang N , Fan J L , Yang H B , et al . Progress in research of mitochondrial fluorescence probes[J]. CIESC Journal, 2016, 67(1): 176-190. | |
11 | 肖瑜峰, 陈林海, 吕伟, 等 . 线粒体靶向的活性氧荧光探针的研究进展[J]. 生命的化学, 2016, 36(4): 538-547. |
Xiao Y F , Chen L H , Lv W , et al . Mitochondrial targeting fluorescent probes for reactive oxygen species[J]. Chemistry of Life, 2016, 36(4): 538-547. | |
12 | Frederickson C J , Koh J Y , Bush A I . The neurobiology of zinc in health and disease[J]. Nature Reviews Neuroscience, 2005, 6(6): 449-462. |
13 | Toshiyuki F , Yamasaki S , Nishida K , et al . Zinc homeostasis and signaling in health and diseases[J]. Journal of Biological Inorganic Chemistry, 2011, 16(7): 1123-1134. |
14 | Krężel A , Maret W . The biological inorganic chemistry of zinc ions[J]. Archives of Biochemistry and Biophysics, 2016, 611: 3-19. |
15 | 刘璐璐, 但飞君, 付林娜, 等 . 基于喹啉Zn2+荧光探针的合成及其性能[J]. 精细化工, 2017, 34(5): 481-487. |
Liu L L , Dan F J , Fu L N , et al . Synthesis and properties of a fluorescent probe for Zn2+ based on quinoline[J]. Fine Chemicals, 2017, 34(5): 481-487. | |
16 | Li J , Chen Y H , Chen T T , et al . A benzothiazole-based fluorescent probe for efficient detection and discrimination of Zn2+ and Cd2+, using cysteine as an auxiliary reagent[J]. Sensors and Actuators B: Chemical, 2018, 268: 446-455. |
17 | Sreenath K , Allen J R , Davidson M W , et al . A FRET-based indicator for imaging mitochondrial zinc ions[J]. Chemical Communications, 2011, 47(42): 11730-11732. |
18 | Xue L , Li G P , Yu C L , et al . A ratiometric and targetable fluorescent sensor for quantification of mitochondrial zinc ions[J]. Chemistry-A European Journal, 2012, 18(4): 1050-1054. |
19 | Baek N Y , Heo C H , Lim C S , et al . A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue[J]. Chemical Communications, 2012, 48(38): 4546-4548. |
20 | Rathore K , Lim C S , Lee Y , et al . Dual-color imaging of cytosolic and mitochondrial zinc ions in live tissues with two-photon fluorescent probes[J]. Organic & Biomolecular Chemistry, 2014, 12(21): 3406-3412. |
21 | Ning P , Jiang J C , Li L C , et al . A mitochondria-targeted ratiometric two-photon fluorescent probe for biological zinc ions detection[J]. Biosensors and Bioelectronics, 2016, 77: 921-927. |
22 | Dalapati S , Jana S , Alam A , et al . Multifunctional fluorescent probe selective for Cu(II) and Fe(III) with dual-mode of binding approach[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1106-1111. |
23 | Su H T , Sun B , Chen L J , et al . Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions[J]. Analytical Methods, 2012, 4(12): 3981-3986. |
24 | Giuffrida M L , Rizzarelli E , Tomaselli G A , et al . A novel fully water-soluble Cu(I) probe for fluorescence live cell imaging[J]. Chemical Communications, 2014, 50(69): 9835-9838. |
25 | Hu L , Wang H , Fang B , et al . A reversible two-photon fluorescence probe for Cu(II) based on Schiff-base in HEPES buffer and in vivo imaging[J]. Sensors and Actuators B: Chemical, 2017, 251: 993-1000. |
26 | Dodani S C , Leary S C , Cobine P A , et al . A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis[J]. Journal of the American Chemical Society, 2011, 133(22): 8606-8616. |
27 | Taki M , Akaoka K , Mitsui K , et al . A mitochondria-targeted turn-on fluorescent probe based on a rhodol platform for the detection of copper(I)[J]. Organic & Biomolecular Chemistry, 2014, 12(27): 4999-5005. |
28 | Shen C , Kolanowski J L , Tran C M N , et al . A ratiometric fluorescent sensor for the mitochondrial copper pool[J]. Metallomics, 2016, 8(9): 915-919. |
29 | Li H , Zhang R L , Li C X , et al . Real-time detection and imaging of copper(Ⅱ) in cellular mitochondria[J]. Organic & Biomolecular Chemistry, 2017, 15(3): 598-604. |
30 | Renzoni A , Zino F , Franchi E . Mercury levels along the food chain and risk for exposed populations[J]. Environmental Research, 1998, 77(2): 68-72. |
31 | Richardson S D , Ternes T A . Water analysis: emerging contaminants and current issues[J]. Analytical Chemistry, 2005, 77(12): 3807-3838. |
32 | Gao Y Y , Ma T T , Ou Z Z , et al . Highly sensitive and selective turn-on fluorescent chemosensors for Hg2+ based on thioacetal modified pyrene[J]. Talanta, 2018, 178: 663-669. |
33 | Deepa S , Rajendrakumar R . A symmetrical luminol based azo derivative for trimodal ratiometric Hg2+ sensing and its application to bioimaging in living cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 773-786. |
34 | Chen J H , Liu W M , Zhou B J , et al . Coumarin- and rhodamine-fused deep red fluorescent dyes: synthesis, photophysical properties, and bioimaging in vitro [J]. The Journal of Organic Chemistry, 2013, 78(12): 6121-6130. |
35 | Agarwalla H , Mahajan P S , Sahu D , et al . A switch-on NIR probe for specific detection of Hg2+ ion in aqueous medium and in mitochondria[J]. Inorganic Chemistry, 2016, 55(22): 12052-12060. |
36 | Long L , Tan X , Luo S L , et al . Fluorinated near-infrared fluorescent probes for specific detection of Hg2+ in an aqueous medium and mitochondria of living cells[J]. New Journal of Chemistry, 2017, 41(17): 8899-8904. |
37 | Kakhlon O , Cabantchik Z I . The labile iron pool: characterization, measurement, and participation in cellular processes[J]. Free Radical Biology and Medicine, 2002, 33(8): 1037-1046. |
38 | Swaminathan S , Fonseca V A , Alam M G , et al . The role of iron in diabetes and its complications[J]. Diabetes Care, 2007, 30(7): 1926-1933. |
39 | Chen X , Sun W , Bai Y J , et al . Novel rhodamine Schiff base type naked-eye fluorescent probe for sensing Fe3+ and the application in cell[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 191: 566-572. |
40 | Chen W D , Gong W T , Ye Z Q , et al . FRET-based ratiometric fluorescent probes for selective Fe3+ sensing and their applications in mitochondria[J]. Dalton Transactions, 2013, 42(28): 10093-10096. |
41 | Zhu C C , Wang M J , Qiu L , et al . A mitochondria-targeting fluorescent Fe3+ probe and its application in labile Fe3+ monitoring via imaging and flow cytometry[J]. Dyes and Pigments, 2018, 157: 328-333. |
42 | Block W D , Knapp E L . Metabolism, toxicity, and manner of action of gold compounds in the treatment of arthritis[J]. The Journal of Pharmacology and Experimental Therapeutics, 1945, 83(4): 275-278. |
43 | Wang Y , Liu Y W , Miao J F , et al . A novel Bodipy-based fluorescent probe for Au3+ ions with high selectivity and its application to bioimaging[J]. Sensors and Actuators B: Chemical, 2016, 226: 364-369. |
44 | Srisuratsiri P , Kanjanasirirat P , Chairongdua A , et al . Reversible rhodamine-alkyne Au3+-selective chemosensor and its bioimaging application[J]. Tetrahedron Letters, 2017, 58(32): 3194-3199. |
45 | Feng Y , Li D X , Wang Q , et al . A carbazole-based mitochondria-targeted two-photon fluorescent probe for gold ions and its application in living cell imaging[J]. Sensors and Actuators B: Chemical, 2016, 225: 572-578. |
46 | Wang W J , Zhang W , Feng Y , et al . Strategically modified highly selective mitochondria-targeted two-photon fluorescent probe for Au3+ employing Schiff-base: inhibited C=N isomerization vs. hydrolysis mechanism[J]. Dyes and Pigments, 2018, 150: 241-251. |
47 | Wolf F I , Torsello A , Fasanella S , et al . Cell physiology of magnesium [J]. Molecular Aspects of Medicine, 2003, 24 (1/2/3): 11-26. |
48 | Marimuthu P , Ramu A . A ratiometric fluorescence chemosensor for Mg2+ ion and its live cell imaging[J]. Sensors and Actuators B: Chemical, 2018, 266: 384-391. |
49 | Liu M , Yu X , Li M , et al . Fluorescent probes for the detection of magnesium ions (Mg2+): from design to application [J]. RSC Advances, 2018, 8(23): 12573-12587. |
50 | Shindo Y , Fujii T , Komatsu H , et al . Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria[J]. PLoS One, 2011, 6(8): e23684. |
51 | Zhang G , Gruskos J J , Afzal M S , et al . Visualizing changes in mitochondrial Mg2+ during apoptosis with organelle-targeted triazole-based ratiometric fluorescent sensors[J]. Chemical Science, 2015, 6(12): 6841-6846. |
52 | Wang Z W , Saifee O , Nonet M L , et al . SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction[J]. Neuron, 2001, 32(5): 867-881. |
53 | Xiong M Y , Zhu H J , Rong Q M , et al . A membrane-anchored fluorescent probe for detecting K+ in the cell microenvironment[J]. Chemical Communications, 2016, 52(25): 4679-4682. |
54 | Schwarze T , Riemer J , Holdt H J . A ratiometric fluorescent probe for K+ in water based on a phenylaza-18-crown-6 lariat ether [J]. Chemistry-A European Journal, 2018, 24(40): 10116-10121. |
55 | Kong X X , Su F Y , Zhang L Q , et al . A highly selective mitochondria-targeting fluorescent K+ sensor[J]. Angewandte Chemie International Edition, 2015, 54(41): 12053-12056. |
56 | Schindler M , Grabski S , Hoff E , et al . Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr)[J]. Biochemistry, 1996, 35 (9): 2811-2817. |
57 | Holopainen J M , Saarikoski J , Kinnunen P K J , et al . Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs)[J]. European Journal of Biochemistry, 2001, 268(22): 5851-5856. |
58 | Zhu Q , Li Z , Mu L , et al . A quinoline-based fluorometric and colorimetric dual-modal pH probe and its application in bioimaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 188: 230-236. |
59 | Lee D , Swamy K M K , Hong J , et al . A rhodamine-based fluorescent probe for the detection of lysosomal pH changes in living cells[J]. Sensors and Actuators B: Chemical, 2018, 266: 416-421. |
60 | Li P , Xiao H B , Cheng Y F , et al . A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH[J]. Chemical Communications, 2014, 50(54): 7184-7187. |
61 | Chen Y C , Zhu C C , Cen J J , et al . Ratiometric detection of pH fluctuation in mitochondria with a new fluorescein/cyanine hybrid sensor[J]. Chemical Science, 2015, 6(5): 3187-3194. |
62 | Wu Y M , Li K , Liu Y H , et al . Mitochondria-targeted ratiometric fluorescent probe for real time monitoring of pH in living cells[J]. Biomaterials, 2015, 53: 669-678. |
63 | Sarkar A R , Heo C H , Xu L , et al . A ratiometric two-photon probe for quantitative imaging of mitochondrial pH values[J]. Chemical Science, 2016, 7(1): 766-773. |
64 | Xiong X Z , Liu J L , He W H , et al . Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children[J]. Environmental Research, 2007, 103(1): 112-116. |
65 | 张世玲, 彭孝军 . 氟离子荧光探针的研究进展[J].化工学报, 2016, 67(1): 191-201. |
Zhang S L , Peng X J . Research progress on fluorescent probes for fluoride ions[J]. CIESC Journal, 2016, 67(1): 191-201. | |
66 | Yuan X , Zhao C X , Lu Y X , et al . A novel naphthalimide-based probe for highly sensitive and selective recognition of fluoride ion[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 361: 41-47. |
67 | Du M , Huo B L , Liu J M , et al . A near-infrared fluorescent probe for selective and quantitative detection of fluoride ions based on Si-Rhodamine[J]. Analytica Chimica Acta, 2018, 1030: 172-182. |
68 | Zhang S L , Fan J L , Zhang S Z , et al . Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe[J]. Chemical Communications, 2014, 50(90): 14021-14024. |
69 | Wu Z S , Tang X J . Visualizing fluoride ion in mitochondria and lysosome of living cells and in living mice with positively charged ratiometric probes[J]. Analytical Chemistry, 2015, 87(17): 8613-8617. |
70 | Shen Y M , Zhang X Y , Zhang Y Y , et al . An ICT-modulated strategy to construct colorimetric and ratiometric fluorescent sensor for mitochondria-targeted fluoride ion in cell living[J]. Sensors and Actuators B: Chemical, 2018, 258: 544-549. |
71 | Zhou K , Ren M G , Wang L , et al . A targetable fluorescent probe for real-time monitoring of fluoride ions in mitochondria[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 204: 777-782. |
72 | Pacher P , Beckman J S , Liaudet L . Nitric oxide and peroxynitrite in health and disease[J]. Physiological Reviews, 2007, 87(1): 315-424. |
73 | Li H Y , Li X H , Wu X F , et al . Observation of the generation of ONOO– in mitochondria under various stimuli with a sensitive fluorescence probe[J]. Analytical Chemistry, 2017, 89(10): 5519-5525. |
74 | Zhu B C , Wang Z K , Zhao Z Y , et al . A simple highly selective and sensitive hydroquinone-based two-photon fluorescent probe for imaging peroxynitrite in live cells[J]. Sensors and Actuators B: Chemical, 2018, 262: 380-385. |
75 | Zhang H X , Liu J , Sun Y Q , et al . A mitochondria-targetable fluorescent probe for peroxynitrite: fast response and high selectivity[J]. Chemical Communications, 2015, 51(13): 2721-2724. |
76 | Zhu B C , Zhang M , Wu L , et al . A highly specific far-red fluorescent probe for imaging endogenous peroxynitrite in the mitochondria of living cells[J]. Sensors and Actuators B: Chemical, 2018, 257: 436-441. |
77 | Cheng D , Pan Y , Wang L , et al . Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe[J]. Journal of the American Chemical Society, 2017, 139(1): 285-292. |
78 | Sun W , Shi Y D , Ding A X , et al . Imaging viscosity and peroxynitrite by a mitochondria-targeting two-photon ratiometric fluorescent probe[J]. Sensors and Actuators B: Chemical, 2018, 276: 238-246. |
79 | McCord J M . Free radicals and inflammation: protection of synovial fluid by superoxide dismutase[J]. Science, 1974, 185(4150): 529-531. |
80 | Lu D Q , Zhou L Y , Wang R W , et al . A two-photon fluorescent probe for endogenous superoxide anion radical detection and imaging in living cells and tissues[J]. Sensors and Actuators B: Chemical, 2017, 250: 259-266. |
81 | Li R Q , Mao Z Q , Rong L , et al . A two-photon fluorescent probe for exogenous and endogenous superoxide anion imaging in vitro and in vivo [J]. Biosensors and Bioelectronics, 2017, 87: 73-80. |
82 | Zhang Z , Fan J L , Zhao Y H , et al . Mitochondria-accessing ratiometric fluorescent probe for imaging endogenous superoxide anion in live cells and daphnia magna[J]. ACS Sensors, 2018, 3(3): 735-741. |
83 | Han X Y , Wang R , Song X Y , et al . A mitochondrial-targeting near-infrared fluorescent probe for bioimaging and evaluating endogenous superoxide anion changes during ischemia/reperfusion injury[J]. Biomaterials, 2018, 156: 134-146. |
84 | Li P , Zhang W , Li K X , et al . Mitochondria-targeted reaction-based two-photon fluorescent probe for imaging of superoxide anion in live cells and in vivo [J]. Analytical Chemistry, 2013, 85(20): 9877-9881. |
85 | Qin G H , Wu M Q , Wang J X , et al . Sulfur dioxide contributes to the cardiac and mitochondrial dysfunction in rats[J]. Toxicological Sciences, 2016, 151(2): 334-346. |
86 | Ye Z , Duan C , Sheng R L , et al . A novel colorimetric and ratiometric fluorescent probe for visualizing SO2 derivatives in environment and living cells[J]. Talanta, 2018, 176: 389-396. |
87 | Huang M F , Chen L N , Ning J Y , et al . A new lipid droplets-targeted fluorescence probe for specific detection of SO2 derivatives in living cells[J]. Sensors and Actuators B: Chemical, 2018, 261: 196-202. |
88 | Yin G X , Gan Y B , Yu T , et al . A dual-emission and mitochondria-targeted fluorescent probe for rapid detection of SO2 derivatives and its imaging in living cells[J]. Talanta, 2019, 191: 428-434. |
89 | Li H D , Zhou X , Fan J L , et al . Fluorescence imaging of SO2 derivatives in Daphnia magna with a mitochondria-targeted two-photon ratiometric fluorescent probe[J]. Sensors and Actuators B: Chemical, 2018, 254: 709-718. |
90 | Zhao M , Liu D K , Zhou L , et al . Two water-soluble two-photon fluorescence probes for ratiometric imaging endogenous SO2 derivatives in mitochondria[J]. Sensors and Actuators B: Chemical, 2018, 255: 1228-1237. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[6] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[9] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[10] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[13] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[14] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||