CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4337-4345.DOI: 10.11949/0438-1157.20190278
• Biochemical engineering and technology • Previous Articles Next Articles
He ZHENG1(),Shengjiang YANG2,Yongchao ZHENG1,Yan CUI1,Xuan GUO1,Jinyi ZHONG1(
),Jian ZHOU2(
)
Received:
2019-03-22
Revised:
2019-07-10
Online:
2019-11-05
Published:
2019-11-05
Contact:
Jinyi ZHONG,Jian ZHOU
郑禾1(),杨盛江2,郑永超1,崔燕1,郭旋1,钟近艺1(
),周健2(
)
通讯作者:
钟近艺,周健
作者简介:
郑禾(1984—),男,博士研究生,助理研究员,基金资助:
CLC Number:
He ZHENG, Shengjiang YANG, Yongchao ZHENG, Yan CUI, Xuan GUO, Jinyi ZHONG, Jian ZHOU. Molecular dynamics simulation of denaturation of DhaA induced by urea and dimethyl sulfoxide[J]. CIESC Journal, 2019, 70(11): 4337-4345.
郑禾, 杨盛江, 郑永超, 崔燕, 郭旋, 钟近艺, 周健. 尿素和二甲基亚砜诱导DhaA变性的分子动力学模拟[J]. 化工学报, 2019, 70(11): 4337-4345.
DhaA模拟体系 | 通道长度/? | 通道曲率 | 瓶颈尺寸/? | 通过成本 |
---|---|---|---|---|
纯水 | 12.55 | 1.25 | 1.16 | 0.45 |
尿素 | 22.48 | 1.45 | 1.10 | 0.54 |
DMSO | 10.27 | 1.27 | 1.26 | 0.19 |
Table 1 Main tunnel parameters of DhaA in different simulation systems
DhaA模拟体系 | 通道长度/? | 通道曲率 | 瓶颈尺寸/? | 通过成本 |
---|---|---|---|---|
纯水 | 12.55 | 1.25 | 1.16 | 0.45 |
尿素 | 22.48 | 1.45 | 1.10 | 0.54 |
DMSO | 10.27 | 1.27 | 1.26 | 0.19 |
Fig.5 Numbers of H-bonds in DhaA in simulation systems(blue bar represents H-bond between DhaA and water molecules, red bar represents H-bond between DhaA and organic molecules, black bar represents intramolecular H-bond of DhaA molecules)
Fig.6 Snapshots of solution molecules distribution within 3.5 ? around catalytic sites in DhaA in different simulation systems(blue beads represent water molecules, red beads represent urea molecules, green beads represent DMSO molecules)
Fig.8 Structural change of catalytic sites of DhaA in different simulation systems(blue part represents DhaA in water, red part represents DhaA in urea solution, orange part represents DhaA in DMSO solution)
1 | KoudelakovaT, BidmanovaS, DvorakP, et al. Haloalkane dehalogenases: biotechnological applications[J]. Biotechnol. J., 2013, 8: 32-45. |
2 | NagataY, OhtsuboY, TsudaM. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases[J]. Appl. Microbiol. Biotechnol., 2015, 99: 9865-9881. |
3 | HarveyP S. Enzymatic degradation of HD[R]. USA: Edgewood Chemical Biological Center, 2002. |
4 | BidmanovaS, SteinerM S, StepanM, et al. Enzyme-based test strips for visual or photographic detection and quantitation of gaseous sulfur mustard[J]. J. Anal. Chem., 2016, 88: 6044-6049. |
5 | 郭楠, 董亮, 刘景全, 等. 烷基卤去卤化酶对芥子气的催化水解[J]. 环境化学, 2015, 34: 1363-1370. |
GuoN, DongL, LiuJ Q, et al. Catalytic hydrolysis of sulfur mustard by haloalkane dehalogenases[J]. Environ. Chem., 2015, 34: 1363-1370. | |
6 | 赵渊中, 钟近艺, 郭楠, 等. 多点突变提高DhaA对芥子气的活性和热稳定性[J]. 应用与环境生物学报, 2017, 23: 714-718. |
ZhaoY Z, ZhongJ Y, GuoN, et al. Improvement in the thermostability and activity of DhaA against sulfur mustard by multipoint mutagenesis[J]. Chin. J. Appl. Environ. Biol., 2017, 23: 714-718. | |
7 | StepankovaV, DamborskyJ, ChaloupkovaR. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases[J]. Biotechnol. J., 2013, 8: 719-729. |
8 | LiskovaV, BednarD, PrudnikovaT, et al. Balancing the stability-activity trade-off by fine-tuning dehalogenase access tunnels[J]. ChemCatChem, 2015, 7: 648-659. |
9 | ZhaoY Z, YuW L, ZhengH, et al. PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA[J]. J. Biotechnol., 2017, 254: 25-33. |
10 | ZhengH, ZhongJ Y, CuiY, et al. Mesoporous support designed for DhaA adsorption with improved stability[J]. J. Porous. Mat., 2019, 26(3): 829-837. |
11 | 郑禾, 钟近艺, 崔燕, 等. 荧光光谱法研究氨基改性介孔泡沫对DhaA的稳定化机理[J]. 光谱学与光谱分析, 2019, 39: 1776-1784. |
ZhengH, ZhongJ Y, CuiY, et al. Stabilization mechanism of amino-mesocellular foam to DhaA by fluorescence spectroscopic method[J]. Spectrosc. Spect. Anal., 2019, 39: 1776-1784. | |
12 | DaggettV. Molecular dynamics simulations of the protein unfolding/folding reaction[J]. Acc. Chem. Res., 2002, 35: 422-429. |
13 | TretyakovaT, ShushanyanM, PartskhaladzeT, et al. Simplicity within the complexity: bilateral impact of DMSO on the functional and unfolding patterns of α-chymotrypsin[J]. Biophys. Chem., 2013, 175/176: 17-27. |
14 | KhanS H, PrakashA, PandeyP, et al. Protein folding: molecular dynamics simulations and in vitro studies for probing mechanism of urea- and guanidinium chloride induced unfolding of horse cytochrome-c[J]. Int. J. Biol. Macromol., 2019, 122: 695-704. |
15 | YamadaT, MitakuS, YamatoT. Characterization of mechanical unfolding intermediates of membrane proteins by coarse grained molecular dynamics simulation[J]. Chem. Phys. Lett., 2018, 691: 276-282. |
16 | CanchiD R, GarciaA E. Cosolvent effects on protein stability[J]. Annu. Rev. Phys. Chem., 2013, 64: 273-293. |
17 | 廖晨伊, 周健. β发卡多肽Trpzip4折叠的副本交换分子动力学模拟[J]. 化学学报, 2013, 71: 593-601. |
LiaoC Y, ZhouJ. Replica exchange molecular dynamics simulations on the folding of Trpzip4 β-hairpin[J]. Acta Chim. Sinica, 2013, 71: 593-601. | |
18 | 曹了然, 张春煜, 张鼎林, 等. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报, 2017, 33: 1354-1365. |
CaoL R, ZhangC Y, ZhangD L, et al. Recent developments in using molecular dynamics simulation techniques to study biomolecules[J]. Acta Physico-Chimica Sinica, 2017, 33: 1354-1365. | |
19 | RoccatanoD, WongT S, SchwanebergU, et al. Structural and dynamic properties of cytochrome P450 BM-3 in pure water and in a dimethylsulfoxide/water mixture[J]. Biopolymers, 2005, 78: 259-267. |
20 | LiJ H, ChenY, YangJ, et al. Thermal and urea induced unfolding processes of glutathione S-transferase by molecular dynamics simulation[J]. Biopolymers, 2015, 103: 247-259. |
21 | KhanP, PrakashA, HaqueM A, et al. Structural basis of urea-induced unfolding: unraveling the folding pathway of hemochromatosis factor E[J]. Int. J. Biol. Macromol., 2016, 91: 1051-1061. |
22 | 沈洪辰, 丁吉勇, 李丽, 等. Y220C突变体影响p53C蛋白质构象转换的分子动力学模拟[J]. 物理化学学报, 2016, 32: 2620-2627. |
ShenH C, DingJ Y, LiL, et al. Effect of Y220C mutant on the conformational transition of p53C probed by molecular dynamics simulation[J]. Acta Physico-Chimica Sinica, 2016, 32: 2620-2627. | |
23 | 卢滇楠, 闫明, 张敏莲, 等. 蛋白质-表面活性剂组装结构的分子模拟[J]. 化工学报, 2006, 57(8): 1949-1956. |
LuD N, YanM, ZhangM L, et al. Molecular simulation of protein-surfactant assembly in aqueous solution[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(8): 1949-1956. | |
24 | 杨程, 卢滇楠, 张敏莲, 等. 分子动力学模拟二硫键对胰岛素构象稳定性的影响[J]. 化工学报, 2010, 61(4): 929-934. |
YangC, LuD N, ZhangM L, et al. Molecular dynamics simulation of impact of disulfide bridge on conformational stability of insulin[J]. CIESC Journal, 2010, 61(4): 929-934. | |
25 | 潘晓莉, 李代禧, 魏冬青. 胰岛素活性结构在水合离子液体中的稳定性[J]. 化工学报, 2017, 68(5): 2035-2041. |
PanX L, LiD X, WeiD Q. Bioactive structural stability of insulin in hydrated ionic liquids[J]. CIESC Journal, 2017, 68(5): 2035-2041. | |
26 | HessB, KutznerC, van de SpoelD, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. J. Chem. Theory Comput., 2008, 4: 435-447. |
27 | 赵渊中. 脱卤酶对芥子气的催化活性和稳定性研究[D]. 北京: 防化研究院, 2016. |
ZhaoY Z. Study on the activity and stability of dehalogenase against sulfur mustard[D]. Beijing: Research Institute of Chemical Defense, 2016. | |
28 | JurcikA, BednarD, ByskaJ, et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories[J]. Bioinfomatics, 2018, 34: 3586-3588. |
29 | AmreshP, GunjanD, NaveenK M, et al. Elucidation of stable intermediates in urea induced unfolding pathway of human carbonic anhydrase Ⅸ[J]. J. Biomol. Struct. Dtn., 2017, 36: 2391-2406. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Shiting XIE, Zhuang LIU, Rui XIE, Xiaojie JU, Wei WANG, Dawei PAN, Liangyin CHU. Study on preparation of poly(N-isopropylacrylamide-co-allylthiourea) smart microgels and responsive performance of Hg2+ [J]. CIESC Journal, 2023, 74(6): 2689-2698. |
[3] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[4] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[5] | Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment [J]. CIESC Journal, 2022, 73(5): 2222-2232. |
[6] | Zeyan LI, Xing FAN, Jian LI. Non-thermal plasma enhanced hydrolysis of urea decomposition by-products over TiO2 [J]. CIESC Journal, 2021, 72(9): 4698-4707. |
[7] | Nan HU,Xue CHEN,Hui ZHANG,Aishu LI,Guangyue LI,Yongdong WANG,Dexin DING. Experimental study on the remediation of low concentration uranium wastewater by Sporosarcina pasteurii induced carbonate-uranium co-precipitation [J]. CIESC Journal, 2021, 72(10): 5354-5361. |
[8] | Hui ZHOU,Zhifeng TIAN,Xiaowei TANG,Zhilong XIU. Urease-driven preparation of calcium carbonate micro-nanoparticles with different polymorphs [J]. CIESC Journal, 2021, 72(10): 5319-5329. |
[9] | Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate [J]. CIESC Journal, 2020, 71(4): 1424-1431. |
[10] | Wanqiang LIU,Fan YANG,Hua YUAN,Yuanda ZHANG,Pinggui YI,Hu ZHOU. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J]. CIESC Journal, 2020, 71(11): 5159-5168. |
[11] | LI Zhaoning, ZHAO Yanjie, TANG Yupeng. Adhesion characteristics of urea aqueous solution in solidification and crystallization [J]. CIESC Journal, 2018, 69(S2): 232-239. |
[12] | QI Chang, LU Diannan, LIU Yongmin. Prediction of thermodynamic properties of n-alkanes based on temperature-corrected force field [J]. CIESC Journal, 2018, 69(8): 3338-3347. |
[13] | LI Tingting, ZHAO Lele, ZHENG Ziliang, WANG Zhenjun, ZHANG Ruiping. Preparation and in vitro properties of S(+)-ibuprofen/urea-montmorillonite [J]. CIESC Journal, 2017, 68(9): 3631-3637. |
[14] | XU Shang, ZHAO Lingling, CAI Zhuangli, CHEN Chao. Modeling study on thermal conductivity of two-dimensional hexagonal aluminum nitride [J]. CIESC Journal, 2017, 68(9): 3321-3327. |
[15] | NAN Yiling, KONG Xian, LI Jipeng, LU Diannan. Non-equilibrium molecular dynamics simulation of water flow inside nano-slit [J]. CIESC Journal, 2017, 68(5): 1786-1793. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 572
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 553
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||