CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2222-2232.DOI: 10.11949/0438-1157.20211847
• Energy and environmental engineering • Previous Articles Next Articles
Yinlong XU1,2(),Wenchieh CHENG1,2(),Lin WANG1,2,Zhongfei XUE1,2,Yixin XIE1,2
Received:
2021-12-30
Revised:
2022-03-28
Online:
2022-05-24
Published:
2022-05-05
Contact:
Wenchieh CHENG
徐银龙1,2(),郑文杰1,2(),王琳1,2,薛中飞1,2,谢毅鑫1,2
通讯作者:
郑文杰
作者简介:
徐银龙(1998—),男,硕士研究生,基金资助:
CLC Number:
Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment[J]. CIESC Journal, 2022, 73(5): 2222-2232.
徐银龙, 郑文杰, 王琳, 薛中飞, 谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究[J]. 化工学报, 2022, 73(5): 2222-2232.
试验方案 | 铜离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) | 尿素浓度/(mmol/L) | 脲酶浓度/(g/L) | 壳聚糖浓度/(g/L) |
---|---|---|---|---|---|---|
a | 5、10、30、40、50 | — | — | 500 | 3 | 0、2、4 |
b | 5、10、30、40、50 | — | 250 | 500 | 3 | 2、4 |
c | 5、10、30、40、50 | 250 | — | 500 | 3 | 2、4 |
Table 1 Testing scheme applied to the present work
试验方案 | 铜离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) | 尿素浓度/(mmol/L) | 脲酶浓度/(g/L) | 壳聚糖浓度/(g/L) |
---|---|---|---|---|---|---|
a | 5、10、30、40、50 | — | — | 500 | 3 | 0、2、4 |
b | 5、10、30、40、50 | — | 250 | 500 | 3 | 2、4 |
c | 5、10、30、40、50 | 250 | — | 500 | 3 | 2、4 |
模拟方案 | 铜离子浓度/(mmol/L) | 铵根离子浓度/(mmol/L) | 碳酸根离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) |
---|---|---|---|---|---|
无钙源模拟 | 5~50 | 实测浓度 | 实测浓度 | — | — |
5~100 | 100~700 | 50~350 | — | — | |
醋酸钙模拟 | 5~100 | 100~700 | 50~350 | — | 250 |
氯化钙模拟 | 5~100 | 100~700 | 50~350 | 250 | — |
Table 2 Simulation scheme applied to the present work
模拟方案 | 铜离子浓度/(mmol/L) | 铵根离子浓度/(mmol/L) | 碳酸根离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) |
---|---|---|---|---|---|
无钙源模拟 | 5~50 | 实测浓度 | 实测浓度 | — | — |
5~100 | 100~700 | 50~350 | — | — | |
醋酸钙模拟 | 5~100 | 100~700 | 50~350 | — | 250 |
氯化钙模拟 | 5~100 | 100~700 | 50~350 | 250 | — |
1 | 郑喜珅, 鲁安怀, 高翔, 等. 土壤中重金属污染现状与防治方法[J]. 土壤与环境, 2002, 11(1): 79-84. |
Zheng X S, Lu A H, Gao X, et al. Contamination of heavy metals in soil present situation and method[J]. Soil and Environmental Sciences, 2002, 11(1): 79-84. | |
2 | Al-Saydeh S A, El-Naas M H, Zaidi S J. Copper removal from industrial wastewater: a comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 35-44. |
3 | 周鹏飞, 张世文, 罗明, 等. 矿业废弃地不同生态修复模式下植物多样性及重金属富集迁移特征[J]. 环境科学, 2022, 43(2): 985-994. |
Zhou P F, Zhang S W, Luo M, et al. Characteristics of plant diversity and heavy metal enrichment and migration under different ecological restoration modes in abandoned mining areas[J]. Environmental Science, 2022, 43(2): 985-994. | |
4 | Chen H M, Zheng C R, Tu C. Heavy metal pollution in soils in China: status and countermeasures[J]. Ambio, 1999, 28(2): 130-134. |
5 | 李想, 吴雅琴, 张高旗, 等. 含铜废水治理及资源化利用技术新进展[J]. 环境科学与技术, 2018, 41(8): 34-40, 86. |
Li X, Wu Y Q, Zhang G Q, et al. Advanced progress in treatment and resource utilization of copper containing wastewater[J]. Environmental Science & Technology, 2018, 41(8): 34-40, 86. | |
6 | 孙潇昊, 缪林昌, 童天志, 等. 微生物诱导碳酸镁沉淀试验研究[J]. 岩土工程学报, 2018, 40(7): 1309-1315. |
Sun X H, Miao L C, Tong T Z, et al. Comparison between microbiologically-induced calcium carbonate precipitation and magnesium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1309-1315. | |
7 | Ahenkorah I, Rahman M M, Karim M R, et al. Enzyme induced calcium carbonate precipitation and its engineering application: a systematic review and meta-analysis[J]. Construction and Building Materials, 2021, 308: 125000. |
8 | Xue Z F, Cheng W C, Wang L, et al. Effects of bacterial inoculation and calcium source on microbial-induced carbonate precipitation for lead remediation[J]. Journal of Hazardous Materials, 2022, 426: 128090. |
9 | 陆兆文, 钱春香, 许燕波. 微生物菌粉与菌液矿化固结Zn2+的研究与对比[J]. 环境科学与技术, 2012, 35(S2): 58-61. |
Lu Z W, Qian C X, Xu Y B. Study and comparison of mineralized consolidation Zn2+ between bacteria and powder[J]. Environmental Science & Technology, 2012, 35(S2): 58-61. | |
10 | 钱春香, 许燕波, 胡黎明, 等. 一种微生物固结污染体系中Cu2+的研究[J]. 环境科学与技术, 2011, 34(S2): 33-36. |
Qian C X, Xu Y B, Hu L M, et al. Study on Cu2+ in contaminated system mineralized by bacteria[J]. Environmental Science & Technology, 2011, 34(S2): 33-36. | |
11 | Nam I H, Roh S B, Park M J, et al. Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract[J]. CATENA, 2016, 136: 53-58. |
12 | Moghal A A B, Lateef M A, Abu Sayeed Mohammed S, et al. Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique[J]. Applied Sciences, 2020, 10(21): 7568. |
13 | Moghal A A B, Lateef M A, Mohammed S A S, et al. Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions[J]. Sustainability, 2020, 12(17): 7019. |
14 | Wang L, Cheng W C, Xue Z F. The effect of calcium source on Pb and Cu remediation using enzyme-induced carbonate precipitation[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 849631. |
15 | Maroney M J, Ciurli S. Nonredox nickel enzymes[J]. Chemical Reviews, 2014, 114(8): 4206-4228. |
16 | 王丽萍, 胥义, 郑艺华, 等. 采用微量热法研究重金属离子对脲酶催化水解反应的影响[J]. 高等学校化学学报, 2012, 33(8): 1771-1776. |
Wang L P, Xu Y, Zheng Y H, et al. Urease-catalyzed reactions inhibited by heavy metals ion with micro-calorimetry[J]. Chemical Journal of Chinese Universities, 2012, 33(8): 1771-1776. | |
17 | 滕应, 骆永明, 李振高. 土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响[J]. 中国环境科学, 2008, 28(2): 147-152. |
Teng Y, Luo Y M, Li Z G. Kinetics characters of soil urease, acid phosphotase and dehydrogenase activities in soil contaminated with mixed heavy metals[J]. China Environmental Science, 2008, 28(2): 147-152. | |
18 | 李嘉辰, 俞斌, 王琦, 等. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360. |
Li J C, Yu B, Wang Q, et al. Molecular simulation on doxorubicin encapsulation and transport by chitosanboron nitride nanotubes[J]. CIESC Journal, 2020, 71(1): 354-360. | |
19 | 汪玉庭, 刘玉红, 张淑琴. 甲壳素、壳聚糖的化学改性及其衍生物应用研究进展[J]. 功能高分子学报, 2002, 15(1): 107-114. |
Wang Y T, Liu Y H, Zhang S Q. Advances in chemical modification and application of chitin, chitosan and their derivatives[J]. Journal of Functional Polymers, 2002, 15(1): 107-114. | |
20 | Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent: applications and mode of action[J]. Biomacromolecules, 2003, 4(6): 1457-1465. |
21 | Hadrami A EI, Adam L R, Hadrami I EI, et al. Chitosan in plant protection[J]. Marine Drugs, 2010, 8(4): 968-987. |
22 | Liu Y G, Li W M, Wei C B, et al. Preparation of a xanthine sensor based on the immobilization of xanthine oxidase on a chitosan modified electrode by cross-linking[J]. Chinese Journal of Chemistry, 2012, 30(7): 1601-1604. |
23 | 董海丽, 任晓燕. 磁性壳聚糖微球对大豆乳清废水中蛋白质的吸附作用[J]. 食品科学, 2007, 28(7): 205-207. |
Dong H L, Ren X Y. Adsorption effects of magnetic chitosan microsphere on protein in soy whey wastewater[J]. Food Science, 2007, 28(7): 205-207. | |
24 | 冯颖, 崔倩, 解玉鞠, 等. 磁性壳聚糖微球的改性研究进展及其在水处理中的应用[J/OL]. 复合材料学报: [2021-12-15]. . |
Feng Y, Cui Q, Xie Y J, et al. Research progress on modification of magnetic chitosan microspheres and its application in water treatment[J/OL]. Acta Materiae Compositae Sinica: [2021-12-15]. . | |
25 | Nawarathna T H K, Nakashima K, Kawasaki S. Chitosan enhances calcium carbonate precipitation and solidification mediated by bacteria[J]. International Journal of Biological Macromolecules, 2019, 133: 867-874. |
26 | Hamdan N, Zhao Z, Mujica M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089. |
27 | 吴敏, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报, 2020, 42(10): 1914-1921. |
Wu M, Gao Y F, He J, et al. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. | |
28 | Whiffin V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Morduch University, 2004. |
29 | Chaperon S, Sauvé S. Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation[J]. Ecotoxicology and Environmental Safety, 2008, 70(1): 1-9. |
30 | 梁高杰, 王丹丹, 谢巧玲, 等. 氧肟酸型聚合物制备及其在铜氨废水处理中的应用研究[J]. 应用化工, 2021, 50(12): 3304-3308. |
Liang G J, Wang D D, Xie Q L, et al. Synthesis of hydroxamic polymer and application on the copper ammonia wastewater treatment[J]. Applied Chemical Industry, 2021, 50(12): 3304-3308. | |
31 | Duarte-Nass C, Rebolledo K, Valenzuela T, et al. Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: challenges to future industrial application[J]. Journal of Environmental Management, 2020, 256: 109938. |
32 | 余木火, 周征龙, 武秀阁, 等. 壳聚糖醋酸水溶液粘度行为的研究[J]. 高分子材料科学与工程, 1991, 7(6): 97-101. |
Yu M H, Zhou Z L, Wu X G, et al. Study on viscometric behaviours of chitosan-HAc aqueous solution[J]. Polymer Materials Science & Engineering, 1991, 7(6): 97-101. | |
33 | 宋艳艳, 孔维宝, 宋昊, 等. 磁性壳聚糖微球的研究进展[J]. 化工进展, 2012, 31(2): 345-354. |
Song Y Y, Kong W B, Song H, et al. Reseach progress in magnetic chitosan microspheres[J]. Chemical Industry and Engineering Progress, 2012, 31(2): 345-354. | |
34 | Juang R S, Wu F C, Tseng R L. Use of chemically modified chitosan beads for sorption and enzyme immobilization[J]. Advances in Environmental Research, 2002, 6(2): 171-177. |
35 | 张玉亭, 吕彤. 胶体与界面化学[M]. 北京: 中国纺织出版社, 2008: 210. |
Zhang Y T, Lyu T. Colloid and Interface Chemistry[M]. Beijing: China Textile & Apparel Press, 2008: 210. | |
36 | Nilsen-Nygaard J, Strand S P, Vårum K M, et al. Chitosan: gels and interfacial properties[J]. Polymers, 2015, 7(3): 552-579. |
37 | Nie J, Wang Z, Hu Q. Chitosan hydrogel structure modulated by metal ions[J]. Scientific Reports, 2016, 6: 36005. |
[1] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[2] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[3] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[4] | Chengwei LI, Huayong LUO, Mingxuan ZHANG, Peng LIAO, Qian FANG, Hongwei RONG, Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal [J]. CIESC Journal, 2022, 73(9): 3929-3939. |
[5] | Ping OUYANG, Rui ZHANG, Jian ZHOU, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG. Electrochemical behavior and copper electrodeposition mechanism of Cu-Al bimetallic composite ionic liquid [J]. CIESC Journal, 2022, 73(7): 3212-3221. |
[6] | Kailun FANG, Shuaishuai CHEN, Jiawei FU, Xin JIANG. Effect of aging process on copper manganese composite catalyst [J]. CIESC Journal, 2022, 73(10): 4438-4447. |
[7] | LIU Zengxin,WANG Yijun,HAO Chunlian,LIU Xiuping. Metal-organic frameworks: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient CO2/CH4 separation [J]. CIESC Journal, 2021, 72(S1): 546-553. |
[8] | Haitao LI, Pingfan MENG, Yin ZHANG, Ruifang WU, Xin HUANG, Lijun BAN, Xudong HAN, Lin XI, Xinghao WANG, Bohui TIAN, Yongxiang ZHAO. Study on formaldehyde ethynylation performance of CuO nanocrystalline confined in SiO2 networks [J]. CIESC Journal, 2021, 72(9): 4708-4717. |
[9] | ZHAO Xinyu, GENG Yuhao, TIAN Zhenhao, XU Jianhong. Application of CdSe@ZnS quantum dot fluorescence sensor in detection of copper ion pollution in water [J]. CIESC Journal, 2021, 72(2): 1142-1148. |
[10] | Xiaoming SUN, Qihao SHA, Chenwei WANG, Daojin ZHOU. Application of copper-based catalysts for hydrogen production in methanol steam reforming [J]. CIESC Journal, 2021, 72(12): 5975-6001. |
[11] | Junhua PEI, Liang YANG, Xin WANG, Han HU, Daoping LIU. Experimental study on kinetics of methane hydrate formation enhanced by copper foam [J]. CIESC Journal, 2021, 72(11): 5751-5760. |
[12] | Xueyan YE, Zheng LI, Ran LUO, Yalin SONG, Ruijuan CUI. Mechanism of influence of flow velocity on colloid blockage in porous media during artificial groundwater recharge [J]. CIESC Journal, 2021, 72(11): 5520-5532. |
[13] | Hong CHEN,Jing XIE,Yuying CHENG,Xin YU,Shanping CHEN,Gang XUE,Meilin WANG,Yi LUO,Xiangyu HE. Study on performance and mechanism of enhanced biological nitrification by zero-valent iron [J]. CIESC Journal, 2021, 72(10): 5372-5383. |
[14] | Lulu ZHANG,Bochuan TAN,Wenpo LI. Synthesis and electrochemical properties of Cu2+-doped MnO2 as cathode materials for aqueous zinc ion batteries [J]. CIESC Journal, 2021, 72(10): 5402-5411. |
[15] | YU Fuqiang, DU Jianjun, LU Yang, MA He, FAN Jiangli, SUN Wen, LONG Saran, PENG Xiaojun. Fabrication of serum albumin-copper phthalocyanine nanoparticles for mitochondria-targeted phototherapy [J]. CIESC Journal, 2021, 72(1): 597-608. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 301
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||