CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 2876-2887.DOI: 10.11949/0438-1157.20190052
Previous Articles Next Articles
Yonggang CHENG1,3(),Jiao LIU1,Zhennan HAN2,Lei SHI2,Guangwen XU1,2()
Received:
2019-01-16
Revised:
2019-04-02
Online:
2019-08-05
Published:
2019-08-05
Contact:
Guangwen XU
程永刚1,3(),刘姣1,韩振南2,石磊2,许光文1,2()
通讯作者:
许光文
作者简介:
程永刚(1993—),男,硕士研究生,基金资助:
CLC Number:
Yonggang CHENG, Jiao LIU, Zhennan HAN, Lei SHI, Guangwen XU. Transfer dynamics and reaction control mechanism over methanation catalyst particles in transport bed[J]. CIESC Journal, 2019, 70(8): 2876-2887.
程永刚, 刘姣, 韩振南, 石磊, 许光文. 输送床甲烷化催化剂颗粒的热质传递行为与反应机制[J]. 化工学报, 2019, 70(8): 2876-2887.
Add to citation manager EndNote|Ris|BibTeX
1 | Rönsch S , Schneider J , Matthischke S , et al . Review on methanation — from fundamentals to current projects[J]. Fuel, 2016, 166: 276-296. |
2 | Yan X , Liu Y , Wang Z , et al . Methanation over Ni/SiO2: effect of the catalyst preparation methodologies[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2283-2291. |
3 | Cai M , Wen J , Chu W , et al . Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier[J]. Journal of Natural Gas Chemistry, 2011, 20(3): 318-324. |
4 | Ang M L , Oemar U , Kathiraser Y , et al . High-temperature water–gas shift reaction over Ni/xK/CeO2 catalysts: suppression of methanation via formation of bridging carbonyls[J]. Journal of Catalysis, 2015, 329: 130-143. |
5 | Saw E T , Oemar U , Tan X R , et al . Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction: Methane suppression via enhanced CO adsorption[J]. Journal of Catalysis, 2014, 314: 32-46. |
6 | Liu H , Zou X , Lu X , et al . Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen[J]. Journal of Natural Gas Chemistry, 2012, 21(6): 703-707. |
7 | Hu D C , Gao J J , Ping Y , et al . Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 4875-4886. |
8 | Gao J J , Jia C M , Li J , et al . Nickel catalysts supported on barium hexaaluminate for enhanced CO methanation[J]. Industrial & Engineering Chemistry Research, 2012, 51(31): 10345-10353. |
9 | Xu G W , Liu J , Cui D M , et al . Method and device for catalytic methanation of synthesis gas: US 9758440 [P]. 2017-9-12. |
10 | Liu J , Cui D M , Yao C B , et al . Syngas methanation in fluidized bed for an advanced two-stage process of SNG production[J]. Fuel Processing Technology, 2016, 141: 130-137. |
11 | Liu J , Dui D M , Yu J , et al . Performance characteristics of fluidized bed syngas methanation over Ni-Mg/Al2O3 catalyst[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 86-92. |
12 | Cui D M , Liu J , Yu J , et al . Attrition-resistant Ni-Mg/Al2O3 catalyst for fluidized bed syngas methanation[J]. Catalysis Science & Technology, 2015, 5(6): 3119-3129. |
13 | Cui D M , Liu J , Yu J , et al . Attrition-resistant NiMg/SiO2Al2O3 catalysts with different silica sources for fluidized bed syngas methanation[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4987-4997. |
14 | Liu J , Cui D M , Yu J , et al . Syngas methanation over spray-granulated Ni/Al2O3 catalyst in a laboratory transport-bed reactor[J]. Chemical Engineering & Technology, 2019, 42(1): 129-136. |
15 | Liu J , Shen W L , Cui D M , et al . Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors[J]. Catalysis Communications, 2013, 38: 35-39. |
16 | Shin M S , Park N , Park M J , et al . Modeling a channel-type reactor with a plate heat exchanger for cobalt-based Fischer-Tropsch synthesis[J]. Fuel Processing Technology, 2014, 118: 235-243. |
17 | Shin M S , Park N , Park M J , et al . Computational fluid dynamics model of a modular multichannel reactor for Fischer-Tropsch synthesis: maximum utilization of catalytic bed by microchannel heat exchangers[J]. Chemical Engineering Journal, 2013, 234: 23-32. |
18 | Karim A , Bravo J , Gorm D , et al . Comparison of wall-coated and packed-bed reactors for steam reforming of methanol[J]. Catalysis Today, 2005, 110(1): 86-91. |
19 | Sutkar V S , Gogate P R , Csoka L . Theoretical prediction of cavitational activity distribution in sonochemical reactors[J]. Chemical Engineering Journal, 2010, 158(2): 290-295. |
20 | Barrientos J , González N , Lualdi M , et al . The effect of catalyst pellet size on nickel carbonyl-induced particle sintering under low temperature CO methanation[J]. Applied Catalysis A: General, 2016, 514: 91-102. |
21 | Chein R Y , Yu C T , Wang C C . Numerical simulation on the effect of operating conditions and syngas compositions for synthetic natural gas production via methanation reaction[J]. Fuel, 2016, 185: 394-409. |
22 | Ducamp J , Bengaouer A , Baurens A . Modelling and experimental validation of a CO2 methanation annular cooled fixed-bed reactor exchanger[J]. The Canadian Journal of Chemical Engineering, 2017, 95(2): 241-252. |
23 | Liu Y , Hinrichsen O . CFD Simulation of hydrodynamics and methanation reactions in a fluidized-bed reactor for the production of synthetic natural gas[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9348-9356. |
24 | Engelbrecht N , Chiuta S , Everson R C , et al . Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation[J]. Chemical Engineering Journal, 2017, 313: 847-857. |
25 | Grace J R , Li T . Complementarity of CFD, experimentation and reactor models for solving challenging fluidization problems[J]. Particuology, 2010, 8(6): 498-500. |
26 | Chen X M , Xiao J , Zhu Y P , et al . Intraparticle mass and heat transfer modeling of methanol to olefins process on SAPO-34: a single particle model[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3693-3707. |
27 | Solsvik J , Jakobsen H A . Modeling of multicomponent mass diffusion in porous spherical pellets: application to steam methane reforming and methanol synthesis[J]. Chemical Engineering Science, 2011, 66(9): 1986-2000. |
28 | Solsvik J , Jakobsen H A . A numerical study of a two property catalyst/sorbent pellet design for the sorption-enhanced steam-methane reforming process: modeling complexity and parameter sensitivity study[J]. Chemical Engineering Journal, 2011, 178: 407-422. |
29 | Solsvik J , Tangen S , Jakobsen H A . On the consistent modeling of porous catalyst pellets: mass and molar formulations[J]. Industrial & Engineering Chemistry Research, 2012, 51(24): 8222-8236. |
30 | Behnam M , Dixon A G , Nijemeisland M , et al . Catalyst deactivation in 3D CFD resolved particle simulations of propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10641-10650. |
31 | Solsvik J , Jakobsen H A . Multicomponent mass diffusion in porous pellets: effects of flux models on the pellet level and impacts on the reactor level. Application to methanol synthesis[J]. The Canadian Journal of Chemical Engineering, 2013, 91(1): 66-76. |
32 | Voss B , Schjødt N C , Grunwaldt J D , et al . Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst[J]. Applied Catalysis A: General, 2011, 402(1): 69-79. |
33 | Zhang X , Sui Z J , Zhou X G , et al . Modeling and simulation of coke combustion regeneration for coked Cr2O3/Al2O3 propane dehydrogenation catalyst[J]. Chinese Journal of Chemical Engineering, 2010, 18(4): 618-625. |
34 | Maroufi S , Khoshandam B , Kumar R V . Mathematical modelling of fluidized-bed reactors for non-catalytic gas-solid reactions[J]. The Canadian Journal of Chemical Engineering, 2010, 88(6): 1034-1043. |
35 | Novák V , Kočí P , Marek M , et al . Multi-scale modelling and measurements of diffusion through porous catalytic coatings: an application to exhaust gas oxidation[J]. Catalysis Today, 2012, 188(1): 62-69. |
36 | 张杰, 李涛 . 甲烷化梅花状催化剂CFD计算及改进[J]. 化工学报, 2018, 69(7): 2985-2992. |
Zhang J , Li T . Application of CFD to improve the calculated process of methanation over plum-shaped catalyst[J]. CIESC Journal, 2018, 69(7): 2985-2992. | |
37 | Lim J Y , Dennis J S . Modeling reaction and diffusion in a spherical catalyst pellet using multicomponent flux models[J]. Industrial & Engineering Chemistry Research, 2012, 51(49): 15901-15911. |
38 | Xu J , Froment G . Methane steam reforming, methanation and water-gas shift(I): Intrinsic kinetics[J]. AIChE Journal, 1989, 35(1): 88-96. |
39 | Mihet M , Cristea V M , Agachi A M , et al . CFD simulations, experimental validation and parametric studies for the catalytic reduction of NO by hydrogen in a fixed bed reactor[J]. RSC Advances, 2016, 6(92): 89259-89273. |
40 | Wind T L , Falsig H , Sehested J , et al . Comparison of mechanistic understanding and experiments for CO methanation over nickel[J]. Journal of Catalysis, 2016, 342: 105-116. |
41 | Mears D . Tests for transport limitations in experimental catalytic reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1972, 11: 320-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||