CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3663-3676.DOI: 10.11949/0438-1157.20190614
• Reviews and monographs • Previous Articles Next Articles
Yi LIU(),Wei WU,Yong LUO,Guangwen CHU(),Haikui ZOU,Jianfeng CHEN
Received:
2019-06-02
Revised:
2019-09-22
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guangwen CHU
通讯作者:
初广文
作者简介:
刘易(1991—),男,博士后,基金资助:
CLC Number:
Yi LIU, Wei WU, Yong LUO, Guangwen CHU, Haikui ZOU, Jianfeng CHEN. Visual study of fluid flow in rotating packed bed reactors: a review[J]. CIESC Journal, 2019, 70(10): 3663-3676.
刘易, 武威, 罗勇, 初广文, 邹海魁, 陈建峰. 旋转填充床反应器流体流动可视化研究进展[J]. 化工学报, 2019, 70(10): 3663-3676.
Fig.3 Liquid flow on surface of R-S wire mesh packing (a) and nickel foam packing (b), experimental setup (c) and typical photos (left: wet packing, right: dry packing) (d)[26]
Fig.10 Typical liquid flow pattern of droplet and ligament,liquid distribution, typical images of droplet motion and schematic diagram of droplet motion in cavity zone[35,36]
1 | LiuY, LuoY, ChuG W, et al. 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 365-377. |
2 | LiuH S, LinC C, WuS C, et al. Characteristics of a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3590-3596. |
3 | RaoD P, BhowalA, GoswamiP S. Process intensification in rotating packed beds (HIGEE): an appraisal[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 1150-1162. |
4 | YangH J, ChuG W, ZhangJ W, et al. Micromixing efficiency in a rotating packed bed: experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7730-7737. |
5 | LuoY, ChuG W, ZouH K, et al. Gas-liquid effective interfacial area in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16320-16325. |
6 | WenzelD, GórakA. Review and analysis of micromixing in rotating packed beds[J]. Chemical Engineering Journal, 2018, 345: 492-506. |
7 | OkoE, RamshawC, WangM. Study of absorber intercooling in solvent-based CO2 capture based on rotating packed bed technology[J]. Energy Procedia, 2017, 142: 3511-3516. |
8 | SunB, ShengM, GaoW, et al. Absorption of nitrogen oxides into sodium hydroxide solution in a rotating packed bed with preoxidation by ozone[J]. Energy & Fuels, 2017, 31(10): 11019-11025. |
9 | ZhangL, WuS, LiangZ, et al. Hydrogen sulfide removal by catalytic oxidative absorption method using rotating packed bed reactor[J]. Chinese Journal of Chemical Engineering, 2017, 25(2): 175-179. |
10 | ZouH, ShengM, SunX, et al. Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed[J]. Fuel, 2017, 204: 47-53. |
11 | ZhangL, WuS, GaoY, et al. Absorption of SO2 with calcium-based solution in a rotating packed bed[J]. Separation and Purification Technology, 2019, 214: 148-155. |
12 | SunB, ZhangL, WengZ, et al. Sulfonation of alkylbenzene using liquid sulfonating agent in rotating packed bed: experimental and numerical study[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 93-100. |
13 | PourakbarM, MoussaviG, YaghmaeianK. Enhanced biodegradation of phenol in a novel cyclic activated sludge integrated with a rotating bed bioreactor in anoxic and peroxidase-mediated conditions[J]. RSC Advances, 2018, 8(12): 6293-6305. |
14 | ZhangD, ZhangP Y, ZouH K, et al. Application of HIGEE process intensification technology in synthesis of petroleum sulfonate surfactant[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 508-513. |
15 | ZhaoY, ArowoM, WuW, et al. Polyaniline/graphene nanocomposites synthesized by in situ high gravity chemical oxidative polymerization for supercapacitor[J]. Journal of Industrial and Engineering Chemistry, 2015, 25: 280-287. |
16 | ZengX F, HanX W, ChenB, et al. Facile synthesis of Mg(OH)2/graphene oxide composite by high-gravity technology for removal of dyes[J]. Journal of Materials Science, 2018, 53(4): 2511-2519. |
17 | WangZ Y, PuY, WangD, et al. 3D foam structured nitrogen doped graphene‐Ni catalyst for highly efficient nitrobenzene reduction[J]. AIChE Journal, 2018, 64(4): 1330-1338. |
18 | LinC C, LinC C. Feasibility of using a rotating packed bed with blade packings to produce ZnO nanoparticles[J]. Powder Technology, 2017, 313: 60-67. |
19 | KangF, WangD, PuY, et al. Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor[J]. Powder Technology, 2018, 325: 405-411. |
20 | MoslehS, RahimiM R, GhaediM, et al. Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization[J]. Ultrasonics Sonochemistry, 2018, 40: 601-610. |
21 | GarciaG C, van der SchaafJ, KissAA. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156. |
22 | LiW, SongB, LiX, et al. Modelling of vacuum distillation in a rotating packed bed by Aspen[J]. Applied Thermal Engineering, 2017, 117: 322-329. |
23 | YangX, LengJ, WangD, et al. Synthesis of flower-shaped V2O5:Fe3+ microarchitectures in a high-gravity rotating packed bed with enhanced electrochemical performance for lithium ion batteries[J]. Chemical Engineering and Processing: Process Intensification, 2017, 120: 201-206. |
24 | BurnsJ R, RamshawC. Process intensification: visual study of liquid maldistribution in rotating packed beds[J]. Chemical Engineering Science, 1996, 51(8): 1347-1352. |
25 | 张军. 旋转床内液体流动与传质的实验研究和计算模拟[D]. 北京: 北京化工大学, 1996. |
ZhangJ. The experimental study and simulation of liquid flow in rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 1996. | |
26 | GuoK, GuoF, FengY, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55(9): 1699-1706. |
27 | XuM, ZhangJ, ChenJ, et al. CFD Modeling of gas-liquid flow and masstransfer in rotating packed beds[C]//World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress on Computational Mechanics. 2004. |
28 | Llerena-ChavezH, LarachiF. Analysis of flow in rotating packed beds via CFD simulations—dry pressure drop and gas flow maldistribution[J]. Chemical Engineering Science, 2009, 64(9): 2113-2126. |
29 | 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726-2732. |
ZhangJ W, LiY C, ChengJ F. Characteristics of micromixing and reaction in a rotating bed[J]. CIESC Journal, 2011, 62(10): 2726-2732. | |
30 | YangW, WangY, ChenJ, et al. Computational fluid dynamic simulation of fluid flow in a rotating packed bed[J]. Chemical Engineering Journal, 2010, 156(3): 582-587. |
31 | MartínezE L, JaimesR, GomezJ L, et al. CFD simulation of three-dimensional multiphase flow in a rotating packed bed[J]. Computer Aided Chemical Engineering, 2012, 30: 1158-1162. |
32 | ShiX, XiangY, WenL X, et al. CFD analysis of liquid phase flow in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2013, 228: 1040-1049. |
33 | 杨旷, 初广文, 邹海魁,等. 旋转床内流体微观流动PIV研究[J]. 北京化工大学学报(自然科学版), 2011, 38(2): 7-11. |
YangK, ChuG W, ZouH K, et al. Visualization of micro-fluid flow in a rotating packed bed using particle image velocimetry method[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2011, 38(2): 7-11. | |
34 | 孙润林, 向阳, 杨宇成, 等. 超重力旋转床液体流动的可视化研究[J].高校化学工程学报, 2013, 27(3): 411-416. |
SunR L, XiangY, YangY C, et al. A visual study of liquid flow in a rotating packing bed with super gravity[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3): 411-416. | |
35 | SangL, LuoY, ChuG W, et al. Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed[J]. Chemical Engineering Science, 2017, 170: 355-364. |
36 | SangL, LuoY, ChuG W, et al. Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: a visual study[J]. Chemical Engineering Science, 2017, 158: 429-438. |
37 | XieP, LuX, YangX, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
38 | GuoT Y, ChengK P, WenL X, et al. Three-dimensional simulation on liquid flow in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8169-8179. |
39 | OuyangY, ZouH K, GaoX Y, et al. Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed[J]. Chemical Engineering and Processing-Process Intensification, 2018, 123: 185-194. |
40 | WuW, LuoY, ChuG W, et al. Gas flow in a multiliquid-inlet rotating packed bed: three-dimensional numerical simulation and internal optimization[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2031-2040. |
41 | XieP, LuX, DingH, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
42 | LuX, XieP, InghamD B, et al. A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds[J]. Chemical Engineering Science, 2018, 189: 123-134. |
43 | XieP, LuX, YangX, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
44 | LiuY, LuoY, ChuG W, et al. Liquid microflow inside the packing of a rotating packed bed reactor: computational, observational and experimental studies[J]. Chemical Engineering Journal, . |
45 | YangY, XiangY, ChuG, et al. A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed[J]. Chemical Engineering Science, 2015, 138: 244-255. |
46 | LiuY, WuW, LuoY, et al. CFD Simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
47 | WuW, LuoY, ChuG W, et al. Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing[J]. Chemical Engineering Journal, . |
48 | GaoX Y, ChuG W, OuyangY, et al. Gas flow characteristics in a rotating packed bed by particle image velocimetry measurement[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14350-14361. |
49 | YangY, XiangY, ChuG, et al. CFD modeling of gas-liquid mass transfer process in a rotating packed bed[J]. Chemical Engineering Journal, 2016, 294: 111-121. |
50 | GuoT Y, ShiX, ChuG W, et al. Computational fluid dynamics analysis of the micromixing efficiency in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4856-4866. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[7] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[8] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[9] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[10] | Sheng CHEN, Mengke WANG, Bona LU, Xiufeng LI, Cenfan LIU, Mengxi LIU, Yiping FAN, Chunxi LU. CFD investigation of effects of feedstock oil vaporization on FCC cracking reaction and coking [J]. CIESC Journal, 2022, 73(7): 2982-2995. |
[11] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[12] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[13] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[14] | Limin WANG, Shuyu GUO, Xing XIANG, Shaotong FU. Research progress of energy-minimization multi-scale method for turbulent system [J]. CIESC Journal, 2022, 73(6): 2415-2426. |
[15] | Xiaoping GUAN, Ning YANG. Multiphase drag and population balance models based on mesoscale stability condition [J]. CIESC Journal, 2022, 73(6): 2427-2437. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1156
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||