1 |
甘智华, 陶轩, 刘东立, 等. 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报(工学版), 2015, 49(10): 1821-1835.
|
|
Gan Z H, Tao X, Liu D L, et al. Status of cryogenic technology development in the space liquid helium temperature zone in Japan[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(10): 1821-1835.
|
2 |
甘智华, 王博, 刘东立, 等. 空间液氦温区机械式制冷技术发展现状及趋势[J]. 浙江大学学报(工学版), 2012, 46(12): 2160-2177.
|
|
Gan Z H, Wang B, Liu D L, et al. Status and trend of mechanical refrigeration technology in space liquid helium temperature zone[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(12): 2160-2177.
|
3 |
刘东立, 申运伟, 甘智华. 空间4 K温区预冷型 JT 制冷机研究进展及关键技术分析[J]. 低温工程, 2017, (2): 1-9.
|
|
Liu D L, Shen Y W, Gan Z H. Research progress and key technical analysis of pre-cooled JT refrigerator in space 4 K temperature zone[J]. Cryogenics, 2017, (2): 1-9.
|
4 |
Salomonovich A E, Sidyakina T M, Khaikin A S, et al. Space helium refrigerator[J]. Cryogenics, 1981, 21(8): 474-478.
|
5 |
Arkhipov V T, Getmanets V F, Levin A Y, et al. Long-life5-10K space cryocooler system with cold accumulator[C]// Cryocoolers 10. Monterey, California, 2002: 529-534.
|
6 |
Bradshaw T W, Orlowska A H. A 4 K mechanical refrigerator for space applications[C]// Proceedings of the 3rd European Symposium on Space Thermal Control & Support Systems. Noordwihk: European Space Agency, 1988: 393-397.
|
7 |
Jones B, Ramsay D. Qualification of a 4 K mechanical cooler for space applications[C]// Cryocoolers 8.Vail: Plenum Press, 1995: 525-535.
|
8 |
Bradshaw T W, Orlowska A H, Hieatt J. Development status of a2.5 K—4 K closed-cycle cooler suitable for space use[C]// Cryocoolers 8.Vail: Plenum Press, 1995: 517-524.
|
9 |
Bradshaw T W, Orlowska A H. Technology developments on the 4 K cooling system for Planck and FIRST[C]// Proceeding of 6th European Symposium on Space Environmental Control Systems. Netherlands, 1997: 465-470.
|
10 |
Collaudin B, Passvogel T. The FIRST and Planck ‘Carrier missions. Description of the cryogenic systems[J]. Cryogenics, 1999, 39(2): 157-165.
|
11 |
Narasaki K, Tsunematsu S, Yajima S, et al. Development of cryogenic system for SMILES[C]// Advances in Cryogenic Engineering. Anchorage, Alaska: American Institute of Physics, 2004: 1785-1796.
|
12 |
Narasaki K, Tsunematsu S, Ootsuka K, et al. Lifetime test and heritage on orbit of coolers for space use[J]. Cryogenics, 2012, 52(4): 188-195.
|
13 |
Sugita H, Sato Y, Nakagawa T, et al. Cryogenic system for the infrared space telescope SPICA[C]// Proceeding of SPIE. Marseille, France, 2008, 7010: 1-9.
|
14 |
Shinozaki K, Sugita H, Sato Y, et al. Developments of1—4K class space mechanical coolers for new generation satellite missions in JAXA[C]// Cryocoolers 16. Atlanta, Georgia, 2011: 1-9.
|
15 |
Shirron P J, Kimball M O, James B L, et al. Design and on-orbit operation of the adiabatic demagnetization refrigerator on the ASTRO-H soft X-ray spectrometer instrument[C]// Space Telescopes and Instrumentation 2016.United Kingdom, 2016.
|
16 |
Quan J, Zhou Z J, Lilt Y J. A miniature liquid helium temperature JT cryocooler for space application[J]. Science China Technological Sciences, 2014, 57: 2236-2240.
|
17 |
马跃学, 王娟, 刘彦杰, 等. 空间预冷型J-T节流制冷机热力学流程优化研究[J]. 工程热物理学报, 2016, 37(11): 2282-2287.
|
|
Ma Y X, Wang J, Liu Y J, et al. Study on the thermodynamic process optimization of space pre-cooled J-T throttle chillers[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2282-2287.
|
18 |
Kimble R A, Davila P S, Diaz C E, et al. The integration and test program of the James Webb Space Telescope [C]// Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. International Society for Optics and Photonics, 2012: 84422K.
|
19 |
Hines D C, Hammel H B, Lunine J I, et al. The James Webb Space Telescope: solar system science[C]// American Astronomical Society Meeting. 2013.
|
20 |
Banks K, Larson M, Aymergen C, et al. James Webb Space Telescope Mid-infrared Instrument cooler systems engineering[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 7017: 70170A.
|
21 |
Lundquist R A, Balzano V, Davila P, et al. Status of the James Webb Space Telescope integrated science instrument module[C]// Space Telescopes and Instrumentation 2012: Optical, Infrared and Millimeter Wave. 2012: 84422M.
|
22 |
Holmes W, Chui T, Johnson D, et al. Cooling systems for far-infrared telescopes and instruments[C]// Proceedings of NASA Science and Technology Conference. 2007.
|
23 |
Durand D, Colbert R, Jaco C, et al. Mid infrared instrument(MIRI) cooler subsystem prototype demonstration[C]// Advances in Cryogenic Engineering. American Institute of Physics, 2008: 807-814.
|
24 |
Durand D, Raab J, Colbert R, et al. NGST advanced cryocooler technology development program (ACTDP) cooler system[C]// Weisendii J G. Advances in Cryogenic Engineering. American Institute of Physics, 2006: 615-622.
|
25 |
Petach M, Durand D, Michaelian M, et al. MIRI cooler system design update[C]// Miller S D, Ross Jr R G. Cryocoolers. Boulder, CO: Springer Science & Business Media, 2011: 9-12.
|
26 |
刘东立, 吴镁, 汪伟伟, 等. 詹姆斯韦伯太空望远镜低温制冷系统的发展历程[J]. 低温工程, 2013, (6): 56-62.
|
|
Liu D L, Wu M, Wang W W, et al. The development of the cryogenic refrigeration system of the James Webb Space Telescope[J]. Cryogenics, 2013, (6): 56-62.
|
27 |
Liu D, Gan Z, De Waele A T A M, et al. Temperature and mass-flow behavior of a He-4 Joule-Thomson cryocooler[J]. International Journal of Heat and Mass Transfer, 2017, 109: 1094-1099.
|
28 |
Liu D, Gan Z, Tao X, et al. Preliminary experimental study on a precooled JT cryocooler working at 4K-open cycle[C]// Cryocoolers 19. San Diego, California, 2016: 377-383.
|