CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1802-1811.DOI: 10.11949/0438-1157.20190835
• Energy and environmental engineering • Previous Articles Next Articles
Xingyu ZHOU1(),Fangui ZENG1,Jianhua XIANG1(),Xiaopeng DENG2,Xinghua XIANG2
Received:
2019-07-22
Revised:
2019-10-10
Online:
2020-04-05
Published:
2020-04-05
Contact:
Jianhua XIANG
通讯作者:
相建华
作者简介:
周星宇(1994—),男,硕士研究生,基金资助:
CLC Number:
Xingyu ZHOU, Fangui ZENG, Jianhua XIANG, Xiaopeng DENG, Xinghua XIANG. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. CIESC Journal, 2020, 71(4): 1802-1811.
周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 1802-1811.
Add to citation manager EndNote|Ris|BibTeX
Proximate analysis/ % (mass) | Ultimate analysis/% (mass, daf) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
0.74 | 1.70 | 20.30 | 38.18 | 81.69 | 5.09 | 11.14 | 1.35 | 0.73 |
Table 1 Proximate and ultimate analyses of MBC
Proximate analysis/ % (mass) | Ultimate analysis/% (mass, daf) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
0.74 | 1.70 | 20.30 | 38.18 | 81.69 | 5.09 | 11.14 | 1.35 | 0.73 |
74.24% | 5.10% | 69.14% | 45.68% | 23.46% | 6.08% | 4.06% | 13.32% | 25.76% | 10.05% | 12.64% | 3.07% |
Table 2 Structural parameters determined by 13C NMR of MBC
74.24% | 5.10% | 69.14% | 45.68% | 23.46% | 6.08% | 4.06% | 13.32% | 25.76% | 10.05% | 12.64% | 3.07% |
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
pyridine nitrogen | 398.90 | 40.48 |
pyrrole nitrogen | 400.44 | 44.54 |
quaternary nitrogen | 402.01 | 6.49 |
nitrogen oxide | 403.06 | 8.49 |
Table 3 X-Ray photoelectron spectra N (1s) data of MBC
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
pyridine nitrogen | 398.90 | 40.48 |
pyrrole nitrogen | 400.44 | 44.54 |
quaternary nitrogen | 402.01 | 6.49 |
nitrogen oxide | 403.06 | 8.49 |
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
mercaptan thiophenol | 163.96 | 58.79 |
thiophene type sulfide | 165.83 | 8.48 |
sulfoxide sulfur | 168.06 | 10.79 |
sulfone type sulfur | 169.45 | 13.72 |
inorganic sulfur | 171.06 | 8.20 |
Table 4 X-Ray photoelectron spectra S(2p) data of MBC
Attribution | Peak information | |
---|---|---|
Binding energy/eV | areafitTP ωmol/% | |
mercaptan thiophenol | 163.96 | 58.79 |
thiophene type sulfide | 165.83 | 8.48 |
sulfoxide sulfur | 168.06 | 10.79 |
sulfone type sulfur | 169.45 | 13.72 |
inorganic sulfur | 171.06 | 8.20 |
Serial No. | Peak position / | Relative area/% | Attribution |
---|---|---|---|
1 | 1010.93 | 10.57 | 灰分 |
2 | 1036.28 | 9.59 | 灰分 |
3 | 1058.61 | 4.55 | 灰分 |
4 | 1098.27 | 10.99 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
5 | 1184.82 | 10.02 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
6 | 1265.14 | 7.05 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
7 | 1335.24 | 6.66 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
8 | 1383.41 | 3.96 | |
9 | 1419.54 | 3.48 | |
10 | 1448.36 | 4.61 | |
11 | 1488.44 | 4.79 | 芳香烃的CC骨架振动 |
12 | 1570.09 | 6.71 | 芳香烃的CC骨架振动 |
13 | 1608.64 | 9.72 | 芳香烃的CC骨架振动 |
14 | 1649.66 | 4.68 | 共轭的 CO 的伸缩振动 |
15 | 1706.90 | 2.62 | 羧酸的 CO 的伸缩振动 |
Table 5 FTIR absorption peak parameters of MBC (1000—1800 cm-1)
Serial No. | Peak position / | Relative area/% | Attribution |
---|---|---|---|
1 | 1010.93 | 10.57 | 灰分 |
2 | 1036.28 | 9.59 | 灰分 |
3 | 1058.61 | 4.55 | 灰分 |
4 | 1098.27 | 10.99 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
5 | 1184.82 | 10.02 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
6 | 1265.14 | 7.05 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
7 | 1335.24 | 6.66 | 酚、醇、醚、苯氧基、酯中C—O伸缩振动 |
8 | 1383.41 | 3.96 | |
9 | 1419.54 | 3.48 | |
10 | 1448.36 | 4.61 | |
11 | 1488.44 | 4.79 | 芳香烃的CC骨架振动 |
12 | 1570.09 | 6.71 | 芳香烃的CC骨架振动 |
13 | 1608.64 | 9.72 | 芳香烃的CC骨架振动 |
14 | 1649.66 | 4.68 | 共轭的 CO 的伸缩振动 |
15 | 1706.90 | 2.62 | 羧酸的 CO 的伸缩振动 |
Molecular formula | Molecular weight | Element content/% | Aromaticity/% | |||
---|---|---|---|---|---|---|
C | H | O | N | |||
3212 | 82.94 | 5.13 | 10.96 | 0.97 | 69.14 |
Table 6 Structure parameters of MBC molecular structural mode
Molecular formula | Molecular weight | Element content/% | Aromaticity/% | |||
---|---|---|---|---|---|---|
C | H | O | N | |||
3212 | 82.94 | 5.13 | 10.96 | 0.97 | 69.14 |
Type | Quantities of aromatic structural units | |
---|---|---|
SDC | MBC | |
0 | 5 | |
9 | 5 | |
5 | 4 | |
1 | 1 | |
1 | 1 |
Table 7 Types and quantities of aromatic structural units of MBC and SDC structure
Type | Quantities of aromatic structural units | |
---|---|---|
SDC | MBC | |
0 | 5 | |
9 | 5 | |
5 | 4 | |
1 | 1 | |
1 | 1 |
1 | 彭苏萍, 张博, 王佟. 我国煤炭资源“井”字形分布特征与可持续发展战略[J]. 中国工程科学, 2015, 17(9): 29-35. |
Peng S P, Zhang B, Wang T. China s coal resources “well” shape distribution characteristics and sustainable development strategy [J]. China Engineering Science, 2015, 17(9): 29-35. | |
2 | 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. |
Xie H P, Wang J H, Wang G F, et al. The new concept of coal revolution and the conception of coal science and technology development[J]. Journal of China Coal Society, 2018, 43(5): 1187-1197. | |
3 | 王素珍. 《物质结构与性质》和《有机化学基础》模块的教学时序对“有机物分子结构与性质”学习影响的研究[J]. 化学教学, 2014, (6): 16-19. |
Wang S Z. Study on the influence of the teaching time series of “Material Structure and Properties” and “Organic Chemistry Foundation” module on the learning and structure of organic matter[J]. Chemical Teaching, 2014, (6): 16-19. | |
4 | Heek K H V. Progress of coal science in the 20th century[J]. Fuel, 2000, 79(1): 1-26. |
5 | Mathews J P, Chaffee A L. The molecular representations of coal — a review[J]. Fuel, 2012, 96(1): 1-14. |
6 | 高天明, 张艳. 中国煤炭资源高效清洁利用路径研究[J]. 煤炭科学技术, 2018, 46(7): 157-164. |
Gao T M, Zhang Y. Study on the path of efficient and clean utilization of coal resources in China [J]. Coal Science and Technology, 2018, 46 (7): 157-164. | |
7 | Xue Y, Zhao W N, Ma P, et al. Ternary blends of biodiesel with petro-diesel and diesel from direct coal liquefaction for improving the cold flow properties of waste cooking oil biodiesel[J]. Fuel, 2016, 177: 46-52. |
8 | 王宝俊, 张玉贵, 谢克昌. 量子化学计算在煤的结构与反应性研究中的应用[J]. 化工学报, 2003, 54(4): 477-488. |
Wang B J, Zhang Y G, Xie K C. Application of quantum chemistry calculation to investigation on coal structure and reactivity[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4): 477-488. | |
9 | 张硕, 张小东, 杨延辉, 等. 溶剂萃取下构造煤的XRD结构演化特征[J]. 光谱学与光谱分析, 2017, 37(10): 3220-3224. |
Zhang S, Zhang X D, Yang Y H, et al. XRD structure evolution characteristics of structural coal extracted with solvent [J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3220-3224. | |
10 | 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1438. |
Liu Z Y. Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1435. | |
11 | Shine J H. From coal to single-stage and two-stage products: a reactive model of coal structure [J]. Fuel, 1984, 63(9): 1187-1196. |
12 | 蔺华林, 李克健, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 41(6): 641-648. |
Lin H L, Li K J, Zhang X W. Structure characterization and model construction of Shangwan coal and it s inertinite concentrated[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 641-648. | |
13 | 崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704-717. |
Cui X, Yan H, Zhao P T. Summary of the construction and analysis methods of coal molecular structure model[J]. Journal of China University of Mining & Technology, 2019, 48(4): 704-717. | |
14 | Li W, Zhu Y M, Chen S B, et al. Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9): 647-652. |
15 | Yan G C, Zhang Z Q, Yan K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1): 147-156. |
16 | Xiang J H, Zeng F G, Li B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 391-400. |
17 | 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报, 2017, 46(5): 939-958. |
Qin Z H. The theory of coal inlay structure model[J]. Journal of China University of Mining & Technology, 2017, 46(5): 939-958. | |
18 | 冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. |
Feng W, Gao H F, Wang G, et al. Molecular model construction of Zaoquan coal and molecular simulation of pyrolysis[J]. CIESC Journal, 2019, 70(4): 1522-1531. | |
19 | Meng J Q, Zhong R Q, Li S C, et al. Molecular model construction and study of gas adsorption of Zhaozhuang coal[J]. Energy & Fuels, 2018, 32(9): 9727-9737. |
20 | Gao M J, Li X X, Guo L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Processing Technology, 2018, 178: 197-205. |
21 | 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388. |
Wang J G, Zhao X H. Key technologies and demonstration of low-rank coal clean and efficient cascade utilization[J]. Journal of the Chinese Academy of Sciences, 2012, 27(3): 382-388. | |
22 | 李昌盛. 大同煤系地层中火成岩对煤层的影响研究[J]. 华北国土资源, 2017, (2): 58-59. |
Li C S. Study on the influence of igneous rocks on coal seam in Datong coal measures strata[J]. Huabei Land and Resources, 2017, (2): 58-59. | |
23 | 孙昱东, 王雪, 魏成, 等. 固定床渣油加氢脱金属废催化剂上焦炭结构和组成沿床层变化研究[J]. 燃料化学学报, 2019, 47(2): 167-173. |
Sun Y D, Wang X, Wei C, et al. Research for structure and composition of coke on spent commercial residue hydrotreating catalysts along HDM bed[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 167-173. | |
24 | 赵云刚. 脱灰处理对伊敏褐煤微观结构影响的实验与分子模拟研究[D]. 太原: 太原理工大学, 2018. |
Zhao Y G. Experimental and molecular simulation study on the effect of deashing treatment on the microstructure of Yimin lignite [D]. Taiyuan: Taiyuan University of Technology, 2018. | |
25 | 贾建波, 曾凡桂, 孙蓓蕾. 神东2-2煤镜质组大分子结构模型13C-NMR谱的构建与修正[J]. 燃料化学学报, 2011, 39(9): 652-657. |
Jia J B, Zeng F G, Sun B L. Construction and modification of 13C-NMR spectra of macromolecular structure model of Shendong 2-2 coal mirror group[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 652-657. | |
26 | Xiang J H, Zeng F G, Liang H Z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488. |
27 | 鄢晓忠, 邱靖, 尹艳山, 等. 褐煤中官能团对其燃烧特性的影响[J]. 煤炭科学技术, 2016, 44(4): 169-174. |
Yan X Z, Qiu J, Yin Y S, et al. Effect of functional groups on the combustion characteristics of lignite[J]. Coal Science and Technology, 2016, 44(4): 169-174. | |
28 | 葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析, 2017, 37(8): 2406-2411. |
Ge T, Zhang M X, Ma X M. FTIR and XPS spectral characterization of coking coal structure in Xinyang [J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2406-2411. | |
29 | 魏强, 唐跃刚, 李薇薇, 等. 煤中有机硫结构研究进展[J]. 煤炭学报, 2015, 40(8): 1911-1923. |
Wei Q, Tang Y G, Li W W, et al. Progress in the study of organic sulfur structure in coal [J]. Journal of Coal, 2015, 40 (8): 1911-1923. | |
30 | 申曙光, 李焕梅, 王涛, 等. 煤化程度对煤基固体酸结构及其水解纤维素性能的影响[J]. 燃料化学学报, 2013, 41(12): 1466-1472. |
Shen S G, Li H M, Wang T, et al. Influence of degree of coal mineralization on structure of coal-based solid acid and its hydrolytic cellulose performance [J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1466-1472. | |
31 | 李美芬, 曾凡桂, 孙蓓蕾, 等. 低煤级煤热解H2生成动力学及其与第一次煤化作用跃变的关系[J]. 物理化学学报, 2009, 25(12): 2597-2603. |
Li M F, Zeng F G, Sun B L, et al. The kinetics of H2 formation in pyrolysis of low coal grade coal and its relationship with the first coalification jump [J]. Journal of Physical Chemistry, 2009, 25 (12): 2597-2603. | |
32 | 李伍, 朱炎铭, 陈尚斌, 等. 低煤级煤生烃与结构演化的耦合机理研究[J]. 光谱学与光谱分析, 2013, 33(4): 1052-1056. |
Li W, Zhu Y M, Chen S B, et al. Coupling mechanism of hydrocarbon generation and structure evolution in low coal grade coal[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1052-1056. | |
33 | Dong K, Zeng F G, Jia J C, et al. Molecular simulation of the preferential adsorption of CH4 and CO2 in middle-rank coal[J]. Molecular Simulation, 2019, 45(1): 15-25. |
34 | 相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报, 2016, 41(6): 1498-1506. |
Xiang J H, Zeng F G, Liang H Z, et al. Carbon structure characteristics and evolution mechanism of coal with different metamorphic degrees[J]. Journal of China Coal Society, 2016, 41(6): 1498-1506. | |
35 | Li Z K, Wei X Y, Yan H L, et al. Advances in lignite extraction and conversion under mild conditions[J]. Energy Fuel, 2015, 29: 6869-6886. |
36 | 李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216. |
Li Z M, Wang Y M, Li P, et al. Construction of macromolecular model and quantum chemical calculation of Hongshiwan coal in Ningdong [J]. CIESC Journal, 2018, 69 (5): 2208-2216. | |
37 | Jia J B, Wang Y, Li F H, et al. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method[J]. Spectroscopy & Spectral Analysis, 2014, 34(1): 47-51. |
38 | 马延平, 相建华, 李美芬, 等. 柳林3#镜煤吡啶残煤大分子结构模型及分子模拟[J]. 燃料化学学报, 2012, 40(11): 1300-1309. |
Ma Y P, Xiang J H, Li M F, et al. Macromolecular structure model and molecular simulation of Liulin 3# mirror coal pyridine residual coal[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1300-1309. | |
39 | 张小东, 郝宗超, 张硕, 等. 溶剂改造下构造煤纳米级孔隙的差异性变化及机理[J]. 中国矿业大学学报, 2017, 46(1): 148-154. |
Zhang X D, Hao Z C, Zhang S, et al. The variation and mechanism of nano-scale pores in tectonic coal under solvent modification[J]. Journal of China University of Mining & Technology, 2017, 46(1): 148-154. | |
40 | Li Z, Ward C R, Gurba L W. Occurrence of non-mineral inorganic elements in macerals of low-rank coals[J]. Int. J. Coal Geol. , 2010, 81(4): 242-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||