CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 923-935.DOI: 10.11949/0438-1157.20190852
• Reviews and monographs • Previous Articles Next Articles
Shiping ZHAN1,2(),Shiqiang DING1,2,Weijing WANG2,Mingming LI2,Qicheng ZHAO2
Received:
2019-07-24
Revised:
2019-10-06
Online:
2020-03-05
Published:
2020-03-05
Contact:
Shiping ZHAN
詹世平1,2(),丁仕强1,2,王卫京2,李鸣明2,赵启成2
通讯作者:
詹世平
作者简介:
詹世平(1959—),女,博士,教授,基金资助:
CLC Number:
Shiping ZHAN, Shiqiang DING, Weijing WANG, Mingming LI, Qicheng ZHAO. Research progress of biodegradable polymers/drug nanoparticles prepared by supercritical fluid technology[J]. CIESC Journal, 2020, 71(3): 923-935.
詹世平, 丁仕强, 王卫京, 李鸣明, 赵启成. 超临界流体技术制备生物可降解聚合物/药物纳米微粒研究进展[J]. 化工学报, 2020, 71(3): 923-935.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Supercritical states and critical points pure substance (a), binary mixture at constant temperature (b), binary mixture at constant pressure (c) and ternary mixture at constant temperature and pressure (d)
1 | Wang G, Zhou F, Li X, et al. Controlled synthesis of L-cysteine coated cobalt ferrite nanoparticles for drug delivery[J]. Ceramics International, 2018, 44(12): 13588-13594. |
2 | Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs[J]. Journal of Controlled Release, 2017, 260(8): 202-212. |
3 | Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release[J]. Chemical Reviews, 2016, 116(4): 2602-2663. |
4 | 施萍,曾贤伍,何文涛, 等. 肿瘤靶向pH响应药物递送⁃成像体系的合成与控制释放研究[J]. 化学研究, 2019, 30(2): 182-188. |
Shi P, Zeng X W, He W T, et al. Synthesis and controlled release of tumor-targeted pH-responsive drug delivery-imaging system[J]. Chemical Research, 2019, 30(2): 182-188. | |
5 | Barım Ş B, Bayrakçeken A, Bozbağ S E, et al. Control of average particle size of carbon aerogel supported platinum nanoparticles by supercritical deposition[J]. Microporous and Mesoporous Materials, 2017, 245(6): 94-103. |
6 | Guamán-Balcázar M C, Montes A, Fernández-Ponce M T, et al. Generation of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction[J]. Journal of Supercritical Fluids, 2018, 138(4): 92-101. |
7 | Sodeifian G, Sajadian A S. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC)[J]. Journal of Supercritical Fluids, 2018, 133(1): 239-252. |
8 | Nuchuchua O, Nejadnik M R, Goulooze S C, et al. Characterization of drug delivery particles produced by supercritical carbon dioxide technologies[J]. Journal of Supercritical Fluids, 2017, 128(10): 244-262. |
9 | 陈爱政, 康永强, 王士斌, 等. 超临界流体技术构建壳聚糖纳米粒/PLLA-PEG-PLLA 复合微粒及其表征[J]. 化工学报, 2015, 66(4): 1565-1576. |
Chen A Z, Kang Y Q, Wang S B, et al. Preparation and characterization of chitosan nanoparticles/PLLA-PEG-PLLA composite microparticles by supercritical fluid technology [J]. CIESC Journal, 2015, 66(4): 1565-1576. | |
10 | Esfandiari N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2015, 100(5): 129-141. |
11 | Lee L Y, Wang C H, Smith K A. Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel[J]. Journal of Controlled Release, 2008, 125(2): 96-106. |
12 | Lee L Y, Ranganath S H, Fu Y, et al. Paclitaxel release from micro-porous PLGA disks[J]. Chemical Engineering Science, 2009, 64(21): 4341-4349. |
13 | Badens E, Masmoudi Y, Mouahid A, et al. Current situation and perspectives in drug formulation by using supercritical fluid technology[J]. Journal of Supercritical Fluids, 2018, 134(4): 274–283. |
14 | Gooneh-Farahani S, Naimi-Jamal M R, Naghib S M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review[J]. Expert Opinion on Drug Delivery, 2019, 16(1): 79-99. |
15 | Verma D, Gulati N, Kaul S, et al. Protein based nanostructures for drug delivery[J]. Journal of Pharmaceutics, 2018, 2018: 9285854. |
16 | Choi S Y, Rhie M N, Kim H T, et al. Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters[J]. Metabolic Engineering, 2019, 52(19): 30088-30093. |
17 | 王景昌, 杨昌盛, 万泽韬, 等. 生物医用脂肪族聚酯开环聚合的研究进展[J]. 高分子通报, 2018, 236(12): 34-39. |
Wang J C, Yang C S, Wang Z T, et al. Research progress of ring-opening polymerization for biomedical aliphatic polyster[J]. Polymer Bulletin, 2018, 236(12): 34-39. | |
18 | Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles[J]. Nanoscale, 2013, 5(8): 3103-3111. |
19 | Li P, Yang Z, Wang Y, et al. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon[J]. Journal of Microencapsulation, 2015, 32(1): 40-45. |
20 | Wang Y, Li P, Chen L, et al. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles[J]. Drug Delivery, 2015, 22(2): 191-198. |
21 | Wang K, Nune K C, Misra R D K. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules[J]. Acta Biomaterialia, 2016, 36(5): 143-151. |
22 | Biswas S, Chattopadhyay M, Sen K K, et al. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice[J]. Carbohydrate Polymers, 2015, 121(5): 403-410. |
23 | Haq F, Yu H, Wang L, et al. Advances in chemical modifications of starches and their applications[J]. Carbohydrate Polymers, 2019, 476(4): 12-35. |
24 | Myint A A, Lee H W, Seo B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J]. Green Chemistry, 2016, 18(7): 2129-2146. |
25 | 于坤, 韩晓东, 何丽华, 等. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 141-147. |
Yu K, Han X D, He L H, et al. A survey on modification methods of polysaccharides used for drug carrier systems[J]. Materials Reports, 2019, 33(3): 141-147. | |
26 | Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics[J]. Nature Communications, 2018, 9(1): 1410-1421. |
27 | Brunner G. Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes[M]//Topics in Physical Chemistry. New York: Springer, 1994. |
28 | Ž Knez, Markočič E, Leitgeb M, et al. Industrial applications of supercritical fluids: a review[J]. Energy, 2014, 77(12): 235-243. |
29 | Kankala R K, Zhang Y S, Wang S B, et al. Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications[J]. Advanced Healthcare Materials, 2017, 6(16): 1700433. |
30 | Ž Knez, Knez-Hrnčič M, Škerget M. Particle formation and product formulation using supercritical fluids[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6(1): 379-407. |
31 | 陈震, 周进莉, 陶钰婷, 等. 超临界CO2抗溶剂法制备卡维地洛固体分散体[J]. 中国新药杂志, 2019, 28(7): 256-262. |
Chen Z, Zhou J L, Tao Y T, et al. Preparation of carvedilol solid dispersions by supercritical CO2 anti-solvent technology [J]. Chinese Journal of New Drugs, 2019, 28(7): 256-262. | |
32 | Škerget M, Ž Knez, Knez-Hrnčič M. Solubility of solids in sub- and supercritical fluids: a review[J]. Journal of Chemical and Engineering Data, 2011, 56(4): 694-719. |
33 | Zhang X, Heinonen S, Levänen E. Applications of supercritical carbon dioxide in materials processing and synthesis[J]. RSC Advances, 2014, 4(105): 61137-61152. |
34 | Frerich S C. Biopolymer foaming with supercritical CO2-thermodynamics, foaming behaviour and mechanical characteristics[J]. Journal of Supercritical Fluids, 2015, 96(1): 349-358. |
35 | Chauvet M, Sauceau M, Fages J. Extrusion assisted by supercritical CO2: a review on its application to biopolymers[J]. Journal of Supercritical Fluids, 2017, 120(2): 408-420. |
36 | Barros A A, Silva J, Craveiro R, et al. Green solvents for enhanced impregnation processes in biomedicine[J]. Current Opinion Green and Sustainable Chemistry, 2017, 5(6): 82-87. |
37 | Tsivintzelis I, Sanxaridou G, Pavlidou E, et al. Foaming of polymers with supercritical fluids: a thermodynamic investigation[J]. Journal of Supercritical Fluids, 2016, 110(4): 240-250. |
38 | Smith R D, Udseth H R. Mass spectrometry with direct supercritical fluid injection[J]. Analytical Chemistry, 1983, 55(14): 2266-2272. |
39 | Matson D W, Petersen R C, Smith R D. Production of powders and films by the rapid expansion of supercritical solutions[J]. Journal of Materials Science, 1987, 22(6): 1919-1928. |
40 | Pasquali I, Bettini R. Are pharmaceutics really going supercritical?[J]. International Journal of Pharmaceutics, 2008, 364(2): 176-187. |
41 | Türk M, Hils P, Helfgen B, et al. Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents[J]. Journal of Supercritical Fluids, 2002, 22(1): 75-84. |
42 | Paisana M C, Müllers K C, Wahl M A, et al. Production and stabilization of olanzapine nanoparticles by rapidexpansion of supercritical solutions (RESS)[J]. Journal of Supercritical Fluids, 2016, 109(3): 124-133. |
43 | Türk M. Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion processes[J]. Journal of Supercritical Fluids, 2009, 47(3): 537-545. |
44 | Debenedetti P G. Homogeneous nucleation in supercritical fluids[J]. AIChE Journal, 1990, 36(9): 1289-1298. |
45 | Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals[J]. Advanced Drug Delivery Reviews, 2008, 60(3): 399-410. |
46 | Pando C, Cabañas A, Cuadra I A. Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: a review[J]. RSC Advances, 2016, 6(75): 71134-71150. |
47 | Wolff S, Beuermann S, Türk M. Impact of rapid expansion of supercritical solution process conditions on the crystallinity of poly(vinylidene fluoride) nanoparticles[J]. Journal of Supercritical Fluids, 2016, 117(11): 18-25. |
48 | Jiao Z, Wang X, Han S, et al. Preparation of vitamin C liposomes by rapid expansion of supercritical solution process: experiments and optimization[J]. Journal of Drug Delivery Science and Technology, 2019, 51(6): 1-6. |
49 | Satvati H R, Lotfollahi M N. Effects of extraction temperature, extraction pressure and nozzle diameter on micronization of cholesterol by RESS process[J]. Powder Technology, 2011, 210(2): 109-114. |
50 | Gholamhossein S, Ali S S, Sahar D. Preparation of aprepitant, nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC)[J]. Journal of Supercritical Fluids, 2018, 140(10): 72-84. |
51 | Prosapio V, De Marco I, Reverchon E. Supercritical antisolvent coprecipitation mechanisms[J]. Journal of Supercritical Fluids, 2018, 138(8): 247-258. |
52 | Jin H, Hemingway M, Gupta R B, et al. Preparation of thalidomide nano-flakes by supercritical antisolvent with enhanced mass transfer[J]. Particuology, 2012, 10(1): 17-23. |
53 | Prosapio V, Reverchon E, De Marco I. Antisolvent micronization of BSA using supercritical mixtures carbon dioxide+organic solvent[J]. Journal of Supercritical Fluids, 2014, 94(10): 189-197. |
54 | Rodrigues M A, Li J, Padrela L, et al. Anti-solvent effect in the production of lysozyme nanoparticles by supercritical fluid-assisted atomization processes[J]. Journal of Supercritical Fluids, 2009, 48(3): 253-260. |
55 | US Food and Drug Administration (FDA), Generally Recognized as Safe (GRAS)[EB/OL].[2019-7-20]. . |
56 | International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), Harmonised Guideline ICH, Impurities: Guideline for Residual Solvents Q3C(R6)[EB/OL].[2019-7-20]. . |
57 | Duta Lestari S, Machmudah S, Winardi S, et al. Particle micronization of curcuma mangga rhizomes ethanolic extract/biopolymer PVP using supercritical antisolvent process[J]. Journal of Supercritical Fluids, 2019, 146(4): 226-239. |
58 | De Almeida M, Da Rocha B A, Francisco C R L, et al. Evaluation of the in vivo acute antiinflammatory response of curcumin-loaded nanoparticles[J]. Food & Function, 2018, 9(1): 440-449. |
59 | De Marco I, Knauer O, Cice F, et al. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: the influence of solvents[J]. Chemical Engineering Journal, 2012, 203(9): 71-80. |
60 | Cuadra I A, Zahran F, Martín D, et al. Preparation of 5-fluorouracil microparticles and 5-fluorouracil/poly(L-lactide) composites by a supercritical CO2 antisolvent process[J]. Journal of Supercritical Fluids, 2019, 143(1): 64-71. |
61 | Campardelli R, Reverchon E. α-Tocopherol nanosuspensions produced using a supercritical assisted process[J]. Journal of Food Engineering, 2015, 149(3): 131-136. |
62 | Di Capua A, Adami R, Cosenza E, et al. β-Carotene/PVP microspheres produced by supercritical assisted atomization[J]. Powder Technology, 2019, 346(3): 228-236. |
63 | Peng H H, Hong D X, Guan Y X, et al. Preparation of pH-responsive DOX-loaded chitosan nanoparticles using supercritical assisted atomization with an enhanced mixer[J]. International Journal of Pharmaceutics, 2019, 558(3): 82-90. |
64 | Silva A S, Sousa A M, Cabral R P, et al. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery[J]. International Journal of Pharmaceutics, 2017, 519(1/2): 240-249. |
65 | Reverchon E, Porta G D. Micronization of antibiotics by supercritical assisted atomization[J]. Journal of Supercritical Fluids, 2003, 26(3): 243-252. |
66 | Di Capua A, Adami R, Izzo L, et al. Luteolin/dextran-FITC fluorescent microspheres produced by supercritical assisted atomization[J]. Journal of Supercritical Fluids, 2017, 130(12): 97-104. |
67 | Reátegui J L P, Fernandes F P, Dos Santos P, et al. Production of copaiba (Copaifera officinalis) oleoresin particles by supercritical fluid extraction of emulsions[J]. Journal of Supercritical Fluids, 2018, 140(10): 364-371. |
68 | Aguiar A C D, Silva L P S, Rezende C A D, et al. Encapsulation of pepper oleoresin by supercritical fluid extraction of emulsions[J]. Journal of Supercritical Fluids, 2016, 112(6): 37-43. |
69 | Escobedo-Flores Y, Chavez-Flores D, Salmeron I, et al. Optimization of supercritical fluid extraction of polyphenols from oats (Avena sativa L.) and their antioxidant activities[J]. Journal of Cereal Science, 2018, 80(3): 198-204. |
70 | Guamán-Balcázar M C, Montesa A, Pereyra C, et al. Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process[J]. Journal of Supercritical Fluids, 2019, 143(1): 294-304. |
71 | Páulia M C, Reis L, Mezzomo N, et al. Ultrasound-assisted emulsion of laurel leaves essential oil (Laurus nobilis L.) encapsulated by SFEE[J]. Journal of Supercritical Fluids, 2019, 147(5): 284-292. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[3] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[4] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[5] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[6] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[7] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[8] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[9] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[10] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[11] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[12] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[13] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
[14] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[15] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||