CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1818-1826.DOI: 10.11949/0438-1157.20221676
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xuehong WU(), Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU
Received:
2022-12-30
Revised:
2023-03-22
Online:
2023-06-02
Published:
2023-04-05
Contact:
Xuehong WU
通讯作者:
吴学红
作者简介:
吴学红(1979—),男,博士,教授,wuxh1212@163.com
基金资助:
CLC Number:
Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films[J]. CIESC Journal, 2023, 74(4): 1818-1826.
吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826.
样品 | ΔH/(J/g) | Tpeak/℃ | Ton/℃ | Tend/℃ | ||||
---|---|---|---|---|---|---|---|---|
M | S | M | S | M | S | M | S | |
PEG | 193.3 | 190.1 | 54.15 | 24.26 | 49.04 | 16.67 | 60.85 | 28.82 |
PEG/PLA | 120.2 | 128.5 | 55.85 | 24.4 | 47.30 | 18.1 | 65.74 | 32.32 |
PEG/PLA/Al2O35% | 115.0 | 121.0 | 54.52 | 29.84 | 46.18 | 20.76 | 65.94 | 35.30 |
PEG/PLA/Al2O310% | 107.6 | 109.7 | 53.87 | 23.66 | 45.46 | 15.57 | 62.22 | 30.69 |
PEG/PLA/Al2O315% | 106.5 | 108.6 | 53.34 | 14.25 | 34.11 | 6.25 | 54.39 | 22.62 |
PEG/PLA/Al2O320% | 105.2 | 99.6 | 52.97 | 26.34 | 43.25 | 18.83 | 59.68 | 30.77 |
Table 1 DSC data of flexible phase change films
样品 | ΔH/(J/g) | Tpeak/℃ | Ton/℃ | Tend/℃ | ||||
---|---|---|---|---|---|---|---|---|
M | S | M | S | M | S | M | S | |
PEG | 193.3 | 190.1 | 54.15 | 24.26 | 49.04 | 16.67 | 60.85 | 28.82 |
PEG/PLA | 120.2 | 128.5 | 55.85 | 24.4 | 47.30 | 18.1 | 65.74 | 32.32 |
PEG/PLA/Al2O35% | 115.0 | 121.0 | 54.52 | 29.84 | 46.18 | 20.76 | 65.94 | 35.30 |
PEG/PLA/Al2O310% | 107.6 | 109.7 | 53.87 | 23.66 | 45.46 | 15.57 | 62.22 | 30.69 |
PEG/PLA/Al2O315% | 106.5 | 108.6 | 53.34 | 14.25 | 34.11 | 6.25 | 54.39 | 22.62 |
PEG/PLA/Al2O320% | 105.2 | 99.6 | 52.97 | 26.34 | 43.25 | 18.83 | 59.68 | 30.77 |
循环次数 | ΔH/(J/g) | Tpeak/℃ | ||
---|---|---|---|---|
M | S | M | S | |
0 | 107.6 | 109.7 | 53.34 | 24.65 |
100 | 107.5 | 109.7 | 53.51 | 24.30 |
200 | 106.6 | 109.1 | 53.41 | 23.90 |
300 | 105.8 | 108.7 | 53.51 | 24.65 |
400 | 105.2 | 108 | 53.36 | 23.09 |
500 | 104.7 | 107.7 | 53.51 | 25.24 |
Table 2 DSC data before and after the cycle
循环次数 | ΔH/(J/g) | Tpeak/℃ | ||
---|---|---|---|---|
M | S | M | S | |
0 | 107.6 | 109.7 | 53.34 | 24.65 |
100 | 107.5 | 109.7 | 53.51 | 24.30 |
200 | 106.6 | 109.1 | 53.41 | 23.90 |
300 | 105.8 | 108.7 | 53.51 | 24.65 |
400 | 105.2 | 108 | 53.36 | 23.09 |
500 | 104.7 | 107.7 | 53.51 | 25.24 |
1 | Ravotti R, Fellmann O, Lardon N, et al. Investigation of lactones as innovative bio-sourced phase change materials for latent heat storage[J]. Molecules, 2019, 24(7): 1300. |
2 | Umair M M, Zhang Y A, Iqbal K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—a review[J]. Applied Energy, 2019, 235: 846-873. |
3 | Yang L, Yang J, Tang L S, et al. Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity[J]. Energy & Fuels, 2020, 34(2): 2471-2479. |
4 | 何起帆, 吴闽强, 李廷贤, 等. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545. |
He Q F, Wu M Q, Li T X, et al. Preparation and thermophysical properties of octadecane/OBC/EG composite shaped phase change material[J]. CIESC Journal, 2021, 72(S1): 539-545. | |
5 | Wang C Y, Feng L L, Li W, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials[J]. Solar Energy Materials and Solar Cells, 2012, 105: 21-26. |
6 | Huang Q Q, Deng J, Li X X, et al. Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management[J]. Journal of Energy Storage, 2020, 32: 101755. |
7 | Huang Q Q, Li X X, Zhang G Q, et al. Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering, 2021, 183: 116151. |
8 | 方玉堂, 康慧英, 张正国, 等. 聚乙二醇相变储能材料研究进展[J]. 化工进展, 2007, 26(8): 1063-1067. |
Fang Y T, Kang H Y, Zhang Z G, et al. Review of polyethylene glycol for energy storage[J]. Chemical Industry and Engineering Progress, 2007, 26(8): 1063-1067. | |
9 | Huang Q Q, Li X X, Zhang G Q, et al. Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management[J]. Applied Energy, 2022, 309: 118434. |
10 | Chai S Y, Sun K Y, Zhao D H, et al. Form-stable erythritol/HDPE composite phase change material with flexibility, tailorability, and high transition enthalpy[J]. ACS Applied Polymer Materials, 2020, 2(11): 4464-4471. |
11 | Cai Z D, Liu J, Zhou Y X, et al. Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2021, 219: 110728. |
12 | Kenisarin M M, Kenisarina K M. Form-stable phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 1999-2040. |
13 | 郭制安, 隋智慧, 李亚萍, 等. 相变双向调温纺织材料制备技术研究进展[J]. 化工进展, 2022, 41(7): 3648-3659. |
Guo Z A, Sui Z H, Li Y P, et al. Research progress on preparation technology of phase-change bidirectional temperature-regulating textile materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3648-3659. | |
14 | Kou Y, Sun K Y, Luo J P, et al. An intrinsically flexible phase change film for wearable thermal managements[J]. Energy Storage Materials, 2021, 34: 508-514. |
15 | 周晓明, 刘亚楠. 可生物降解PEG/PBS高分子相变储能材料的制备[J]. 合成树脂及塑料, 2012, 29(6): 54-57. |
Zhou X M, Liu Y N. Preparation of biodegradable polymeric phase change materials of PEG/PBS for energy storage[J]. China Synthetic Resin and Plastics, 2012, 29(6): 54-57. | |
16 | 单梦瑶, 杨操, 张世科, 等. 聚乳酸增强增韧的研究进展[J]. 高分子材料科学与工程, 2022, 38(3): 183-190. |
Shan M Y, Yang C, Zhang S K, et al. Progress in reinforcing and toughening of polylactic acid[J]. Polymer Materials Science & Engineering, 2022, 38(3): 183-190. | |
17 | Lu X, Huang J T, Kang B H, et al. Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells, 2019, 192: 170-178. |
18 | 姚鹏成, 夏鑫. 聚乳酸包覆相变材料复合织物的制备及其性能[J]. 纺织学报, 2017, 38(1): 67-72. |
Yao P C, Xia X. Preparation and properties of polylactic acid coated phase change material composite fabric[J]. Journal of Textile Research, 2017, 38(1): 67-72. | |
19 | Ostafinska A, Fortelny I, Nevoralova M, et al. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology[J]. RSC Advances, 2015, 5(120): 98971-98982. |
20 | Wang B, Hina K, Zou H T, et al. Thermal, crystallization, mechanical and decomposition properties of poly(lactic acid) plasticized with poly(ethylene glycol)[J]. Journal of Vinyl and Additive Technology, 2018, 24: E154-E163. |
21 | Li Y L, Wu H Y, Wang Y, et al. Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA[J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(5): 520-528. |
22 | Baiardo M, Frisoni G, Scandola M, et al. Thermal and mechanical properties of plasticized poly(L-lactic acid)[J]. Journal of Applied Polymer Science, 2003, 90(7): 1731-1738. |
23 | Sundararajan S, Samui A B, Kulkarni P S. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies[J]. Journal of Materials Chemistry A, 2017, 5(35): 18379-18396. |
24 | Al-Ahmed A, Mazumder M A J, Salhi B, et al. Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: a review[J]. Journal of Energy Storage, 2021, 35: 102329. |
25 | Liu Z M, Wu B, Fu X W, et al. Two components based polyethylene glycol/thermosetting solid-solid phase change material composites as novel form stable phase change materials for flexible thermal energy storage application[J]. Solar Energy Materials and Solar Cells, 2017, 170: 197-204. |
26 | Darzi M E, Golestaneh S I, Kamali M, et al. Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder[J]. Renewable Energy, 2019, 135: 719-728. |
27 | Jebasingh E B, Arasu V A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications[J]. Energy Storage Materials, 2020, 24: 52-74. |
28 | Wang J F, Xie H Q, Xin Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. |
29 | 刘庆祎, 肖桐, 孙文杰, 等. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报,2022,73(5):1863-1882. |
Liu Q Y, Xiao T, Sun W J, et al. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. CIESC Journal, 2022, 73(5): 1863-1882. | |
30 | Zhang X G, Wu B G, Chen G, et al. Preparation and characterization of flexible smart glycol/polyvinylpyrrolidone/nano-Al2O3 phase change fibers[J]. Energy & Fuels, 2021, 35(1): 877-882. |
31 | 周雪. 聚乳酸/生物降解聚酯弹性体粒子复合材料的制备与性能研究[D]. 青岛: 青岛科技大学, 2016. |
Zhou X. Preparation and properties of poly (lactic acid)(PLA)/biodegradable polyester elastomer particles composites[D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
32 | Chen C Z, Liu K C, Wang H W, et al. Morphology and performances of electrospun polyethylene glycol/poly (DL-lactide) phase change ultrafine fibers for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2013, 117: 372-381. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[8] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||