CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2265-2272.DOI: 10.11949/0438-1157.20191529
• Energy and environmental engineering • Previous Articles Next Articles
Yuexi WU(),Wei ZENG(),Hong LIU,Jianmin LI,Yongzhen PENG
Received:
2019-12-17
Revised:
2020-01-28
Online:
2020-05-05
Published:
2020-05-05
Contact:
Wei ZENG
通讯作者:
曾薇
作者简介:
吴悦溪(1995—),女,硕士研究生, 基金资助:
CLC Number:
Yuexi WU, Wei ZENG, Hong LIU, Jianmin LI, Yongzhen PENG. Exploration of nitrogen transformation pathway in Feammox[J]. CIESC Journal, 2020, 71(5): 2265-2272.
吴悦溪, 曾薇, 刘宏, 李健敏, 彭永臻. Feammox系统内氮素转化途径的研究[J]. 化工学报, 2020, 71(5): 2265-2272.
Add to citation manager EndNote|Ris|BibTeX
反应类型 | 反应方程式 | ΔGθ/(kJ/mol) | 可能性 |
---|---|---|---|
异化铁还原 | -64.6 | 可能 | |
Anammox | -335.0 | 可能 | |
Feammox | -24.3 | 可能 | |
NDFO | -75.9 | 可能 |
Table 1 ΔGθ of probable redox reaction
反应类型 | 反应方程式 | ΔGθ/(kJ/mol) | 可能性 |
---|---|---|---|
异化铁还原 | -64.6 | 可能 | |
Anammox | -335.0 | 可能 | |
Feammox | -24.3 | 可能 | |
NDFO | -75.9 | 可能 |
模拟废水 常量元素 | 浓度/(mg/L) | 模拟废水 常量元素 | 浓度/(mg/L) |
---|---|---|---|
50±5 | NaHCO3 | 500 | |
Fe(Ⅲ) | 30±3 | KH2PO4 | 30 |
5 | CaCl2 | 136 | |
10 | MgCl2·7H2O | 200 |
Table 2 Simulating wastewater composition(Ⅰ)
模拟废水 常量元素 | 浓度/(mg/L) | 模拟废水 常量元素 | 浓度/(mg/L) |
---|---|---|---|
50±5 | NaHCO3 | 500 | |
Fe(Ⅲ) | 30±3 | KH2PO4 | 30 |
5 | CaCl2 | 136 | |
10 | MgCl2·7H2O | 200 |
模拟废水 微量元素 | 浓度/(mg/L) | 模拟废水 微量元素 | 浓度/(mg/L) |
---|---|---|---|
EDTA-2Na | 5000 | Na2MoO4·2H2O | 220 |
ZnSO4·7H2O | 430 | NiCl2·6H2O | 200 |
CoCl2·6H2O | 240 | H3BO4 | 14 |
Table 3 Simulating wastewater composition(Ⅱ)
模拟废水 微量元素 | 浓度/(mg/L) | 模拟废水 微量元素 | 浓度/(mg/L) |
---|---|---|---|
EDTA-2Na | 5000 | Na2MoO4·2H2O | 220 |
ZnSO4·7H2O | 430 | NiCl2·6H2O | 200 |
CoCl2·6H2O | 240 | H3BO4 | 14 |
1 | Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. |
2 | Ding B, Chen Z, Li Z, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662: 600-606. |
3 | Ding L, An X, Li S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. |
4 | Li X, Hou L, Liu M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19): 11560-11568. |
5 | Huang S, Jaffé P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions[J]. Biogeosciences Discussions, 2014, 11(8): 12295-12321. |
6 | Park W, Nam Y, Lee M, et al. Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium[J]. Biotechnology and Bioprocess Engineering, 2009, 14(5): 680-685. |
7 | Li X, Yuan Y, Huang Y, et al. A novel method of simultaneous NH4+ and NO3- removal using Fe cycling as a catalyst: Feammox coupled with NAFO[J]. Science of the Total Environment, 2018, 631/632: 153-157. |
8 | 姚海楠, 张立秋, 李淑更, 等. 厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究[J]. 环境科学学报, 2019, 39(9): 2953-2963. |
Yao H N, Zhang L Q, Li S G, et al. Study on the factors affecting simulated landfill leachate treatment by anaerobic ferric ammonia oxidation[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 2953-2963. | |
9 | Zhang M, Zhing P, Li W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification [J]. Bioresource Technology, 2015, 17 (09): 543–548 |
10 | Klueglein N, Kappler A. Abiotic oxidation of Fe(Ⅱ) by reactive nitrogen species in cultures of the nitrate-reducing Fe(Ⅱ) oxidizer Acidovorax sp. BoFeN1 - questioning the existence of enzymatic Fe(Ⅱ) oxidation[J]. Geobiology, 2013, 11(2): 180-190. |
11 | Oshiki M, Ishii S, Yoshida K, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) bacteria[J]. Applied and Environmental Microbiology, 2013, 79(13): 4087-4093. |
12 | 王茹, 刘梦瑜, 刘冰茵, 等. 共基质模式下铁盐脱氮反应器的运行性能及微生物学特征[J]. 环境科学, 2019, 40(12): 5446-5455. |
Wang R, Liu M Y, Liu B Y, et al. Operational performance and microbiological characteristics of iron salt denitrification reactor in co-substrate mode[J]. Environmental Science, 2019, 40(12): 5446-5455. | |
13 | Zhou J, Wang H, Yang K, et al. Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
14 | Li X, Huang Y, Liu H, et al. Simultaneous Fe(Ⅲ) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64: 42-50. |
15 | 吴胤, 陈琛, 毛小云, 等. 基于Feammox的生物膜反应器性能研究[J]. 中国环境科学, 2017, 37(9): 3353-3362. |
Wu Y, Chen C, Mao X Y, et al. Study on performance of the Feammox biofilm-reactor[J]. China Environmental Science, 2017, 37(9): 3353-3362. | |
16 | 王亚娥, 冯娟娟, 李杰, 等. 不同Fe(Ⅲ)对活性污泥异化铁还原耦合脱氮的影响及机理初探[J]. 环境科学学报, 2014, 34(2): 377-384. |
Wang Y E, Feng J J, Li X, et al. Effect and mechanism of nitrogen removal by dissimilatory reduction of different Fe(Ⅲ)in activated sludge[J]. Acta Scientiae Circumstantiae, 2014, 34(2): 377-384. | |
17 | 李健敏, 杨庆, 刘智斌, 等. Fe2+/Fe3+和Mn2+对低氧曝气过程总氮去除与转化途径的影响[J]. 化工学报, 2019, 70(9): 3503-3510. |
Li J M, Yang Q, Liu Z B, et al. Influences of Fe2+/Fe3+and Mn2+ on total nitrogen removal and nitrogen transformations during low-oxygen aeration[J]. CIESC Journal, 2019, 70(9): 3503-3510. | |
18 | 从岩, 黄晓丽, 王小龙, 等. 厌氧氨氧化颗粒污泥快速形成[J]. 化工学报, 2014, 65(2): 664-671. |
Cong Y, Huang X L, Wang X L, et al. Faster formation of Anammox granular sludge[J]. CIESC Journal, 2014, 65(2): 664-671 | |
19 | 张永辉, 彭永臻, 曾立云, 等. 常温低基质厌氧氨氧化ASBR反应器的快速启动[J]. 工业水处理, 2017, 37(2): 43-47. |
Zhang Y H, Peng Y Z, Zeng L Y, et al. Quick start-up of low-substrate Anammox ASBR reactor at normal temperature[J]. Industrial Water Treatment, 2017, 37(2): 43-47. | |
20 | 陈彦霖, 隋倩雯, 姜黎安, 等. 厌氧氨氧化菌快速富集培养及微生物机制解析[J]. 中国给水排水, 2018, 34(13): 26-31. |
Chen Y L, Sui Q W, Jiang L A, et al. Quick enrichment of Anammox bacteria and microbial community mechanism analysis[J]. China Water & Wastewater, 2018, 34(13): 26-31. | |
21 | 李祥, 林兴, 杨朋兵, 等. 活性污泥厌氧Fe(Ⅲ)还原氨氧化现象初探[J]. 环境科学, 2016, 37(8): 3114-3119. |
Li X, Lin X, Yang P B, et al. Simultaneous ferric reduction with ammonia oxidation phenomena in activated sludge in anaerobic environment[J]. Environmental Science, 2016, 37(8): 3114-3119. | |
22 | Domazou A S, Gebicka L, Didik J, et al. The kinetics of the reaction of nitrogen dioxide with iron(Ⅱ)- and iron(Ⅲ) cytochrome c[J]. Free Radical Biology and Medicine, 2014, 69: 172-180. |
23 | Ding B, Li Z, Qin Y. Nitrogen loss from anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction in a riparian zone[J]. Environmental Pollution, 2017, 231: 379-386. |
24 | Yang Y, Zhang Y, Li Y, et al. Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(Ⅲ) compounds[J]. Chemical Engineering Journal, 2018, 332: 711-716. |
25 | Etique M, Jorand F P A, Zegeye A, et al. Abiotic process for Fe(Ⅱ) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis )[J]. Environmental Science & Technology, 2014, 48(7): 3742-3751. |
26 | Picardal F. Abiotic and microbial interactions during anaerobic transformations of Fe(Ⅱ) and NOx-[J]. Frontiers in Microbiology, 2012, 3: 1-7. |
27 | 刘志文, 陈琛, 彭晓春, 等. 磁性壳聚糖凝胶球固定厌氧铁氨氧化菌对废水氨氮去除的影响[J]. 环境科学, 2018, 39(10): 4601-4611. |
Liu Z W, Chen C, Peng X C, et al. Effect of magnetic chitosan hydrogel beads with immobilized Feammox bacteria on the removal of ammonium from wastewater[J]. Environmental Science, 2018, 39(10): 4601-4611. | |
28 | Bao P, Li G. Sulfur-driven iron reduction coupled to anaerobic ammonium oxidation[J]. Environmental Science & Technology, 2017, 51(12): 6691-6698. |
29 | Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. |
30 | Liu Y, Ni B. Appropriate Fe (Ⅱ) addition significantly enhances anaerobic ammonium oxidation (Anammox) activity through improving the bacterial growth rate[J]. Scientific Reports, 2015, 5(1): 1-7. |
31 | Notini L, Byrne J M, Tomaszewski E J, et al. Mineral defects enhance bioavailability of goethite toward microbial Fe(Ⅲ) reduction[J]. Environmental Science & Technology, 2019, 53(15): 8883-8891. |
[1] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[4] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[5] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[6] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[7] | Xuejin GAO, Zihe HE, Huihui GAO, Yongsheng QI. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix [J]. CIESC Journal, 2022, 73(3): 1300-1314. |
[8] | Yanshan WANG, Xiaochao ZHU, Yingjin SONG, Yihang LI. Study on anaerobic digestion pretreatment coupled with hydrothermal carbonization of grass [J]. CIESC Journal, 2022, 73(2): 904-913. |
[9] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[10] | Xinjie GAO, Zaizhou XU, Yongzhen PENG, Yuwei HUANG, Jing DING, Zeming AN, Chuanxin WANG. Enhance nitrogen removal via endogenous denitrification in a sludge double recirculation-anaerobic/aerobic/anoxic process [J]. CIESC Journal, 2022, 73(11): 5098-5105. |
[11] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[12] | Lanhe ZHANG, Lu WANG, Zimeng LI, Hong TANG, Jingbo GUO, Yanping JIA, Mingshuang ZHANG. The treatment of anionic surfactant wastewater using electrode ultrafiltration membrane bioreactor [J]. CIESC Journal, 2022, 73(10): 4679-4691. |
[13] | XIAO Xian, XU Wenhao, SHEN Liang, WANG Yuanpeng, LU Yinghua. Preparation and electrochemical properties of new porous carbon materials by synthesizing graphene oxide and waste activated sludge [J]. CIESC Journal, 2021, 72(7): 3869-3879. |
[14] | YANG Ruixiong, ZHENG Xin, LU Tao, ZHAO Yuze, YANG Qinghua, LU Yinghua, HE Ning, LING Xueping. Effects of substitution of ER domains on the synthesis of eicosapentaenoic acid in Schizochytrium limacinum SR21 [J]. CIESC Journal, 2021, 72(7): 3768-3779. |
[15] | WEI Wei, CAI Xinyu, LIU Zaiwen, ZUO Min. Disturbance rejection control for wastewater treatment processes [J]. CIESC Journal, 2021, 72(3): 1567-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||