CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1630-1638.DOI: 10.11949/0438-1157.20230058
• Process system engineering • Previous Articles Next Articles
Bing SONG(), Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN
Received:
2023-01-21
Revised:
2023-02-24
Online:
2023-06-02
Published:
2023-04-05
Contact:
Bing SONG
通讯作者:
宋冰
作者简介:
宋冰(1990—),男,博士,副教授,songbing@ecust.edu.cn
基金资助:
CLC Number:
Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA[J]. CIESC Journal, 2023, 74(4): 1630-1638.
宋冰, 郑城风, 侍洪波, 陶阳, 谭帅. 基于VAE-OCCA的质量相关故障检测方法研究[J]. 化工学报, 2023, 74(4): 1630-1638.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
α | 0.001 |
β1 | 0.4 |
β2 | 0.999 |
ε | 1×10-8 |
Table 1 Optimizer parameters of Adam
参数 | 数值 |
---|---|
α | 0.001 |
β1 | 0.4 |
β2 | 0.999 |
ε | 1×10-8 |
方法 | FDR/% |
---|---|
CCA | 91.750 |
AE-CCA | 7.250 |
VAE-OCCA | 98.125 |
Table 2 Fault detection rate of fault 2 in quality-related space
方法 | FDR/% |
---|---|
CCA | 91.750 |
AE-CCA | 7.250 |
VAE-OCCA | 98.125 |
方法 | FAR/% |
---|---|
CCA | 3.125 |
AE-CCA | 7.375 |
VAE-OCCA | 1.125 |
Table 3 False alarm rate of fault 14 in quality-related space
方法 | FAR/% |
---|---|
CCA | 3.125 |
AE-CCA | 7.375 |
VAE-OCCA | 1.125 |
1 | Du K Y, Deng X G. Nonlinear industrial fault detection method based on Bayesian randomized principal component analysis[C]//2021 China Automation Congress (CAC). IEEE, 2022: 720-724. |
2 | Wang F, Wang Q, Nie F P, et al. Efficient tree classifiers for large scale datasets[J]. Neurocomputing, 2018, 284: 70-79. |
3 | Qin S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234. |
4 | Si Y B, Wang Y Q, Zhou D H. Key-performance-indicator-related process monitoring based on improved kernel partial least squares[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2626-2636. |
5 | Peng K X, Li Q Q, Zhang K, et al. Quality-related process monitoring for dynamic non-Gaussian batch process with multi-phase using a new data-driven method[J]. Neurocomputing, 2016, 214: 317-328. |
6 | Peng K X, Zhang K, Li G. Quality-related process monitoring based on total kernel PLS model and its industrial application[J]. Mathematical Problems in Engineering, 2013, 2013: 1-14. |
7 | Chen Z W, Liu C, Ding S X, et al. A just-in-time-learning-aided canonical correlation analysis method for multimode process monitoring and fault detection[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5259-5270. |
8 | Chen Z W, Ding S X, Zhang K, et al. Canonical correlation analysis-based fault detection methods with application to alumina evaporation process[J]. Control Engineering Practice, 2016, 46: 51-58. |
9 | Samuel R T, Cao Y. Kernel canonical variate analysis for nonlinear dynamic process monitoring [J]. IFAC-PapersOnLine, 2015, 48(8): 605-610. |
10 | Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
11 | Ge Z Q, Xie L, Kruger U, et al. Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions[J]. AIChE Journal, 2012, 58(8): 2357-2372. |
12 | Jiang Q C, Yan X F. Non-Gaussian chemical process monitoring with adaptively weighted independent component analysis and its applications[J]. Journal of Process Control, 2013, 23(9): 1320-1331. |
13 | Wang Y W, Chen M Y, Zhou D H. Part mutual information based quality-related component analysis for fault detection[C]//2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). IEEE, 2020: 412-416. |
14 | 金雨婷, 侍洪波, 吕晓龙, 等. 基于KVAE-OCCA的质量相关故障检测方法及应用[J]. 控制工程, 2022, 29(2): 348-355. |
Jin Y T, Shi H B, Lyu X L, et al. Quality-related fault detection method and application based on KVAE-OCCA[J]. Control Engineering of China, 2022, 29(2): 348-355. | |
15 | Wang X M, Wu P, Lou S W. Quality-relevant process monitoring based on improved concurrent canonical correlation analysis[C]//2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2021: 565-570. |
16 | Song Y, Wang Y H. A fault detection method for gas pressure regulators based on improved dynamic canonical correlation analysis[C]//2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021: 3623-3627. |
17 | 高学金, 何紫鹤, 高慧慧, 等. 基于联合典型变量矩阵的多阶段发酵过程质量相关故障监测[J]. 化工学报, 2022, 73(3): 1300-1314. |
Gao X J, He Z H, Gao H H, et al. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix[J]. CIESC Journal, 2022, 73(3): 1300-1314. | |
18 | Nishimori Y, Akaho S. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold[J]. Neurocomputing, 2005, 67: 106-135. |
19 | 董洁, 孙瑞琪, 彭开香, 等. 自动编码器与典型相关分析方法联合驱动的工业过程质量监测[J]. 控制理论与应用, 2019, 36(9): 1493-1500. |
Dong J, Sun R Q, Peng K X, et al. Industrial process quality monitoring method and application joint-driven by automatic encoder and canonical correlation analysis method[J]. Control Theory & Applications, 2019, 36(9): 1493-1500. | |
20 | Song B, Shi H B, Tan S, et al. Multisubspace orthogonal canonical correlation analysis for quality-related plant-wide process monitoring[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6368-6378. |
21 | Yan X Q, Hu S Z, Mao Y Q, et al. Deep multi-view learning methods: a review[J]. Neurocomputing, 2021, 448: 106-129. |
22 | Chen K J, Hu J, Zhang Y, et al. Fault location in power distribution systems via deep graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(1): 119-131. |
23 | 刘旭婷, 李益国, 孙栓柱, 等. 基于稀疏局部嵌入深度卷积网络的冷水机组故障诊断方法[J]. 化工学报, 2018, 69(12): 5155-5163. |
Liu X T, Li Y G, Sun S Z, et al. Fault diagnosis of chillers using sparsely local embedding deep convolutional neural network[J]. CIESC Journal, 2018, 69(12): 5155-5163. | |
24 | 赵佳璐, 任少君, 陈家乐, 等. 基于PRB-SAE算法的非线性系统建模及故障诊断方法[J]. 热能动力工程, 2022, 37(9): 197-205. |
Zhao J L, Ren S J, Chen J L, et al. Nonlinear system modeling and fault diagnosis method based on PRB-SAE algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 197-205. | |
25 | Chen H T, Chen Z W, Chai Z, et al. A single-side neural network-aided canonical correlation analysis with applications to fault diagnosis[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9454-9466. |
26 | Guo X P, Gao J J, Li Y. Process fault detection based on skew Gaussian distribution transformation and canonical variable analysis method[C]//2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). IEEE, 2020: 121-126. |
27 | Hou X X, Shen L L, Sun K, et al. Deep feature consistent variational autoencoder[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2017: 1133-1141. |
28 | Harmouche J, Delpha C, Diallo D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: partⅠ[J]. Signal Processing, 2014, 94: 278-287. |
29 | Kingma D P, Ba J. Adam: a method for stochastic optimization[EB/OL]. . |
30 | Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1): 168-178. |
[1] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[2] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[3] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[4] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[5] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[6] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[7] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[8] | Xuejin GAO, Zihe HE, Huihui GAO, Yongsheng QI. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix [J]. CIESC Journal, 2022, 73(3): 1300-1314. |
[9] | Jinyu GUO, Wentao LI, Yuan LI. Application of adaptive algorithm of online reduced KECA in fault detection [J]. CIESC Journal, 2021, 72(8): 4227-4238. |
[10] | ZHU Xiongzhuo, ZHANG Hanwen, YANG Chunjie. MWPCA blast furnace anomaly monitoring algorithm based on Gaussian mixture model [J]. CIESC Journal, 2021, 72(3): 1539-1548. |
[11] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[12] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[13] | Xuejin GAO, Tengfei LIU, Zidong XU, Huihui GAO, Yongchuan YU. Intermittent process fault monitoring based on recurrent autoencoder [J]. CIESC Journal, 2020, 71(7): 3172-3179. |
[14] | Mingyue DENG, Jianchang LIU, Peng XU, Shubin TAN, Liangliang SHANG. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA [J]. CIESC Journal, 2020, 71(5): 2151-2163. |
[15] | Yu HAN, Junfang LI, Qiang GAO, Yu TIAN, Guogang YU. Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm [J]. CIESC Journal, 2020, 71(3): 1254-1263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||