CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2273-2282.DOI: 10.11949/0438-1157.20191600
• Energy and environmental engineering • Previous Articles Next Articles
Xun SONG1,2(),Qian FU1,2(),Jun LI1,2,Liang ZHANG1,2,Qiang LIAO1,2,Xun ZHU1,2
Received:
2020-01-02
Revised:
2020-02-24
Online:
2020-05-05
Published:
2020-05-05
Contact:
Qian FU
宋珣1,2(),付乾1,2(),李俊1,2,张亮1,2,廖强1,2,朱恂1,2
通讯作者:
付乾
作者简介:
宋珣(1995—),女,硕士研究生,基金资助:
CLC Number:
Xun SONG, Qian FU, Jun LI, Liang ZHANG, Qiang LIAO, Xun ZHU. Numerical simulation of transport characteristics in biocathodes catalyzing carbon dioxide to methane[J]. CIESC Journal, 2020, 71(5): 2273-2282.
宋珣, 付乾, 李俊, 张亮, 廖强, 朱恂. 固碳产甲烷微生物阴极能质传输特性数值模拟[J]. 化工学报, 2020, 71(5): 2273-2282.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 参数来源 |
---|---|---|
温度/K 生物膜厚度/μm | 303.15 50 | 实验 实验 |
浓度扩散层厚度/μm | 100 | [32] |
主体溶液底物浓度/( mol/m3) 底物扩散系数/( m2/s) 半饱和常数/( mol/m3) 底物最大比反应速率/( mol/(kg·s)) 电子受体电子当量 活性生物质电子当量 阴极生物膜电导率/( S/m) 生物膜平均密度/( kg/m3) 生物膜平均孔隙率 活性生物量内源呼吸系数/d-1 | 29.76 1.2×10-9 25.6 1.56×10-4 8 0.177 0.0228 200 0.47 0.05 | 实验 [33] 实验 实验 实验 [18] 实验 [18] [34] [18] |
Table 1 Parameters of model
参数 | 数值 | 参数来源 |
---|---|---|
温度/K 生物膜厚度/μm | 303.15 50 | 实验 实验 |
浓度扩散层厚度/μm | 100 | [32] |
主体溶液底物浓度/( mol/m3) 底物扩散系数/( m2/s) 半饱和常数/( mol/m3) 底物最大比反应速率/( mol/(kg·s)) 电子受体电子当量 活性生物质电子当量 阴极生物膜电导率/( S/m) 生物膜平均密度/( kg/m3) 生物膜平均孔隙率 活性生物量内源呼吸系数/d-1 | 29.76 1.2×10-9 25.6 1.56×10-4 8 0.177 0.0228 200 0.47 0.05 | 实验 [33] 实验 实验 实验 [18] 实验 [18] [34] [18] |
1 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | Balat M, Balat H, Oz C. Progress in bioethanol processing[J]. Progress in Energy and Combustion Science, 2008, 34(5): 551-573. |
3 | Aryal N, Tremblay P L, Lizak D M, et al. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide[J]. Bioresource Technology, 2017, 233: 184-190. |
4 | Siegert M, Yates M D, Call D F, et al. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 910-917. |
5 | Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmetal Science & Technology, 2009, 43(10): 3953-3958. |
6 | Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production[J]. Nature Reviews Microbiol, 2010, 8(10): 706-716. |
7 | Steinbusch K J J, Hamelers H V M, Schaap J D, et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures [J]. Environ. Sci. Technol., 2009, 44 (1): 513-517 |
8 | Huang L, Jiang L, Wang Q, et al. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells [J]. Chem. Eng. J., 2014, 253 (3): 281-290 |
9 | Xiang Y, Liu G, Zhang R, et al. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J]. Bioresource Technology, 2017, 241(Supplement C): 821-829. |
10 | Garcia J L, Patel B K C, Ollivier B. Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea[J]. Anaerobe, 2000, 6: 205-226 |
11 | Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2 to CH4via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresource Technology, 2010, 101(9): 3085-3090. |
12 | Cusick R D, Bryan B, Parker D S, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater[J]. Applied Microbiology & Biotechnology, 2011, 89(6): 2053-2063. |
13 | Zhang X C, Halme A. Modelling of a microbial fuel cell process[J]. Biotechnology Letters, 1995, 17(8): 809-814. |
14 | Sadhukhan J, Ng K S, Hernandez E M. Biorefineries and chemical processes: design, integration and sustainability analysis[J]. Green Processing & Synthesis, 2015, 4(2): 163. |
15 | Picioreanu C, Head I M, Katuri K P, et al. A computational model for biofilm-based microbial fuel cells[J]. Water Research, 2007, 41(13): 2930-2940. |
16 | Pinto R P, Srinivasan B, Manuel M F, et al. A two-population bio-electrochemical model of a microbial fuel cell[J]. Bioresource Technology, 2010, 101(14): 5256-5265. |
17 | Mardanpour M M, Yaghmaei S, Kalantar M. Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters[J]. Journal of Power Sources, 2017, 342: 1017-1031. |
18 | Marcus A K, Torres C I, Rittmann B E. Conduction-based modeling of the biofilm anode of a microbial fuel cell[J]. Biotechnology and Bioengineering, 2007, 98(6): 1171-1182. |
19 | Kazemi M, Biria D, Rismani-Yazdi H. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12561-12574. |
20 | Esfandyari M, Fanaei M A, Gheshlaghi R, et al. Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella[J]. Chemical Engineering Research and Design, 2017, 117: 34-42. |
21 | Ou S, Kashima H, Aaron D S, et al. Multi-variable mathematical models for the air-cathode microbial fuel cell system[J]. Journal of Power Sources, 2016, 314: 49-57. |
22 | Hamelers H V, Ter H A, Stein N, et al. Butler-Volmer-Monod model for describing bio-anode polarization curves[J]. Bioresourcw Technology, 2011, 102(1): 381-387. |
23 | Stein N E, Keesman K J, Hamelers H V M, et al. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor[J]. Biosensors & Bioelectronics, 2011, 26(7): 3115-3120. |
24 | Beyenal H, Babauta J T. Microscale gradients and their role in electron-transfer mechanisms in biofilms[J]. Biochemical Society Transactions, 2012, 40(6): 1315-1318. |
25 | Renslow R, Babauta J, Kuprat A, et al. Modeling biofilms with dual extracellular electron transfer mechanisms[J]. Physical Chemistry Chemical Physics, 2013, 15(44): 19262-19283. |
26 | Sedaqatvand R, Esfahany M N, Behzad T, et al. Parameter estimation and characterization of a single-chamber microbial fuel cell for dairy wastewater treatment[J]. Bioresource Technology, 2013, 146C(10): 247-253. |
27 | Rittmann B E, Mccarty P L. Environmental Biotechnology: Principles and Applications[M]. New York: McGraw-Hill, 2001. |
28 | Bae W, Rittmann B E. Responses of intracellular cofactors to single and dual substrate limitations[J]. Biotechnology and Bioengineering, 1996, 49(6): 690-699. |
29 | Bae W, Rittmann B E. A structured model of dual-limitation kinetics[J]. Biotechnology and Bioengineering, 1996, 49(6): 683-689. |
30 | Bernardi D M, Verbrugge M W. Mathematical model of a gas electrode bonded to a polymer electrolyte[J]. AIChE Journal, 1991, 37(8): 1151-1163. |
31 | Yao S, He Y L, Song B Y, et al. A two-dimensional, two-phase mass transport model for microbial fuel cells[J]. Electrochimica Acta, 2016, 212:201–211. |
32 | Marcus A K, Torres C I, Rittmann B E. Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model[J]. Bioresource Technology, 2011, 102(1): 253-262. |
33 | Picioreanu C, Loosdrecht M C M V, Curtis T P, et al. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance[J]. Bioelectrochemistry, 2010, 78(1): 8-24. |
34 | Renslow R, Babauta J, Dohnalkova A, et al. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms[J]. Environmetal Science & Technology, 2013, 6(6): 1827-1836. |
35 | Malvankar N S, Vargas M, Nevin K P, et al. Tunable metallic-like conductivity in microbial nanowire networks[J]. Nature Nanotechnology, 2011, 6(9): 573-579. |
36 | Li C, Lesnik K L, Liu H. Conductive properties of methanogenic biofilms[J]. Bioelectrochemistry, 2018, 119: 220-226. |
37 | 刘笙. 电气工程基础: 上册[M]. 北京: 科学出版社, 2008. |
Liu S. Fundamentals of Electrical Engineering: Vol. 1 [M]. Beijing: Science Press, 2008. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[6] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[7] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[8] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[9] | Qingchao LIU, Hui JIA, Yifei XU, Na LU, Yanmei YIN, Jie WANG. Study on shear-force distribution in biological aerated filter based on FBG sensing technology [J]. CIESC Journal, 2023, 74(4): 1755-1763. |
[10] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[11] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[12] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[13] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[14] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[15] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||