1 |
尹菊萍, 蒋朝辉. 基于数据的高炉铁水硅含量预测[J]. 有色冶金设计与研究, 2015, 36(3): 36-38+41.
|
|
Yin J P, Jiang Z H. Prediction for blast furnace silicon content in hot metal based on data[J]. Nonferrous Metals Engineering & Research, 2015, 36(3): 36-38+41.
|
2 |
李泽龙, 杨春节, 刘文辉, 等. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997.
|
|
Li Z L, Yang C J, Liu W H, et al. Research on hot metal Si-content prediction based on LSTM-RNN[J]. CIESC Journal, 2018, 69(3): 992-997.
|
3 |
Jian L, Gao C, Xia Z. A sliding‐window smooth support vector regression model for nonlinear blast furnace system[J]. Steel Research International, 2015, 82(3):169-179.
|
4 |
Xu X, Hua C, Tang Y, et al. Modeling of the hot metal silicon content in blast furnace using support vector machine optimized by an improved particle swarm optimizer[J]. Neural Computing and Applications, 2016, 27(6): 1451-1461.
|
5 |
Han Y, Li J, Yang X L, et al. Dynamic prediction research of silicon content in hot metal driven by big data in blast furnace smelting process under Hadoop cloud platform[J]. Complexity, 2018, 2018: 1-16.
|
6 |
Chen W, Wang B X, Han H L. Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm[J]. Ironmaking & Steelmaking, 2013, 37(6): 458-463.
|
7 |
Luo S, Gao C, Zeng J, et al. Blast furnace system modeling by multivariate phase space reconstruction and neural networks[J]. Asian Journal of Control, 2013, 15(2): 553-561.
|
8 |
尹林子, 李乐, 蒋朝辉. 基于粗糙集理论与神经网络的铁水硅含量预测[J]. 钢铁研究学报, 2019,31(8): 689-695.
|
|
Yin L Z, Li L, Jiang Z H. Prediction of silicon content in hot metal using neural network and rough set theory[J]. Journal of Iron and Steel Research, 2019, 31(8): 689-695.
|
9 |
刘家奇, 赵原, 杨文韬, 等. 基于BP神经网络的硅含量动态预测模型[J]. 中国战略新兴产业, 2017, (28): 92.
|
|
Liu J Q, Zhao Y, Yang W T, et al. Dynamic prediction model of silicon content based on BP neural network[J]. China Strategic Emerging Industry, 2017, (28): 92.
|
10 |
文冰洁, 吴胜利, 周恒, 等. 基于BP神经网络的COREX铁水硅含量预测模型[J]. 钢铁研究学报, 2018, 30(10): 776-781.
|
|
Wen B J, Wu S L, Zhou H, et al. A BP neural network based mathematical model for predicting Si content in hot metal from COREX process[J]. Journal of Iron and Steel Research, 2018, 30(10): 776-781.
|
11 |
Zeng J S, Gao C H, Liu X G, et al. Using non‐linear GARCH model to predict silicon content in blast furnace hot metal[J]. Asian Journal of Control, 2010, 10(6): 632-637.
|
12 |
Henrik S, Frank P, Kiran G. Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace[J]. Advanced Manufacturing Processes, 2007, 22(5): 8.
|
13 |
Su X L. Prediction of hot metal silicon content for blast furnace based on multi-layer online sequential extreme learning machine[C]// Proceedings of the 37th Chinese Control Conference(E). China: Technical Committee on Control Theory (TCCT), Chinese Association of Automation (CAA), 2018: 8025-8030.
|
14 |
Yang Y, Zhang S, Yin Y. A modified ELM algorithm for the prediction of silicon content in hot metal[J]. Neural Computing and Applications, 2016, 27(1): 241-247.
|
15 |
Ping Z, Meng Y, Hong W, et al. Data-driven dynamic modeling for prediction of molten iron silicon content using ELM with self-feedback[J]. Mathematical Problems in Engineering, 2015, 2015: 1-11.
|
16 |
蒋朝辉, 董梦林, 桂卫华, 等. 基于Bootstrap的高炉铁水硅含量二维预报[J]. 自动化学报, 2016, 42(5): 715-723.
|
|
Jiang Z H, Dong M L, Gui W H, et al. Two-dimensional prediction for silicon content of hot metal of blast furnace based on Bootstrap[J]. Acta Automatica Sinica, 2016, 42(5): 715-723.
|
17 |
崔桂梅, 侯佳, 高翠玲, 等. 基于多传感器的高炉炼铁操作参数优化[J]. 传感器与微系统, 2015, 34(3): 21-23+27.
|
|
Cui G M, Hou J, Gao C L, et al. Optimization of operational parameters of BF iron-making based on multi-sensor[J]. Transducer and Microsystem Technologies, 2015, 34(3): 21-23+27.
|
18 |
崔桂梅, 李静, 张勇, 等. 高炉铁水温度的多元时间序列建模和预测[J]. 钢铁研究学报, 2014, 26(4): 33-37.
|
|
Cui G M, Li J, Zhang Y, et al. Multivariate time series modeling research for blast furnace hot iron temperature[J]. Journal of Iron and Steel Research, 2014, 26(4): 33-37.
|
19 |
李军朋. 高炉冶炼过程的铁水硅含量分析及其建模研究[D]. 秦皇岛: 燕山大学, 2015.
|
|
Li J P. Analysis and modeling research on hot metal silicon content of blast furnace smelting process[D]. Qinhuangdao: Yanshan University, 2015.
|
20 |
金勇进. 缺失数据的插补调整[J]. 数理统计与管理, 2010, 20(5): 47-53.
|
|
Jin Y J. Imputation adjustment method for missing data[J]. Journal of Applied Statistics and Management, 2010, 20(5): 47-53.
|
21 |
吴金花. 高炉冶炼过程分析及其铁水硅含量预测模型研究[D]. 秦皇岛: 燕山大学, 2016.
|
|
Wu J H. The analysis on blast furnace smelting process and research on hot metal silicon content prediction model[D]. Qinhuangdao: Yanshan University, 2016.
|
22 |
赵哲, 张勇, 于楠楠, 等. 面向铁水温度的高炉异常数据检测及修补[J]. 自动化与仪表, 2015, 30(2): 63-67.
|
|
Zhao Z, Zhang Y, Yu N N, et al. Furnace temperature modelling and data processing for blast furnace object oriented hot metal temperature[J]. Automation & Instrumentation, 2015, 30(2): 63-67.
|
23 |
谷海彤, 陈邵华, 吴晓强, 等. DA多重插补法在电网电能量数据缺失处理中的应用[J]. 广西科技大学学报, 2017, 28(3): 103-109.
|
|
Gu H T, Chen S H,Wu X Q, et al. Application of DA multiple interpolation in electric energy data missing[J]. Journal of Guangxi University of Science and Technology, 2017, 28(3): 103-109.
|
24 |
程豪. 逆概率加权多重插补法在中国居民收入影响因素中的应用研究[J]. 统计与信息论坛, 2019, 34(7): 26-34.
|
|
Cheng H. An application research of inverse probability weighted multiple imputation method on factors of residents income in China[J]. Statistics & Information Forum, 2019, 34(7): 26-34.
|
25 |
丛亚. 面向多采样率数据的工业过程故障检测[D]. 杭州: 浙江大学, 2018.
|
|
Cong Y. Fault detection for industrial process oriented to multi-rate data[D]. Hangzhou: Zhejiang University, 2018.
|
26 |
李志军, 梁乐乐, 韩存武, 等. 基于PLS的多采样率过程故障检测及其仿真[J]. 计算机仿真, 2016, 33(10): 445-449.
|
|
Li Z J, Liang L L, Han C W, et al. Multi-rate process fault detection based on partial least squares[J]. Computer Simulation,2016, 33(10): 445-449.
|
27 |
宋菁华. 高炉冶炼过程的多尺度特性与硅含量预测方法研究[D]. 杭州: 浙江大学, 2016.
|
|
Song J H. Application of improved EMD-Elman neural network to predict silicon content in hot metal[D]. Hangzhou: Zhejiang University, 2016.
|
28 |
Chu Y, Gao C. Data-based multiscale modeling for blast furnace system[J]. AIChE Journal, 2014, 60(6): 2197-2210.
|
29 |
刘敏. 基于模糊模型的高炉硅含量研究及预测[D]. 包头: 内蒙古科技大学, 2012.
|
|
Liu M. Research and prediction of Si content in blast furnace based on fuzzy model[D]. Baotou: Inner Mongolia University of Science and Technology, 2012.
|
30 |
谢灵杰, 高小强, 郑忠, 等. 高炉铁水硅含量自组织预测中的模式量化[J]. 钢铁研究学报, 2004, 16(4): 68-71.
|
|
Xie L J, Gao X Q, Zheng Z, et al. Pattern classification of model for predicting silicon content in hot metal based on self-organized experience evolution[J]. Journal of Iron and Steel Research, 2004, 16(4): 68-71.
|
31 |
谢玮, 毕臣臣, 刘学清, 等. 基于PCA-Kmeans++的煤层气多属性融合聚类分析方法研究[J]. 煤炭技术, 2019, 38(5): 53-56.
|
|
Xie W, Bi C C, Liu X Q, et al. Cluster analysis method for multi-attribute fusion of coalbed methane based on PCA-Kmeans++[J]. Coal Technology, 2019, 38(5): 53-56.
|
32 |
Zhou P, Yuan M, Wang H, et al. Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections[J]. Information Sciences, 2015, 325(20): 237-255.
|
33 |
赵莉, 侯兴哲, 胡君, 等. 基于改进k-means算法的海量智能用电数据分析[J]. 电网技术, 2014, 38(10): 2715-2720.
|
|
Zhao L, Hou X Z, Hu J, et al. Improved k-means algorithm based analysis on massive data of intelligent power utilization[J]. Power System Technology, 2014, 38(10): 2715-2720.
|
34 |
张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4): 5-17+30.
|
|
Zhang R, Li W P, Mo T. Review of deep learning[J]. Information and Control, 2018, 47(4): 5-17+30.
|