CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3661-3670.DOI: 10.11949/0438-1157.20191115

• Process system engineering • Previous Articles     Next Articles

Optimal method of selecting silicon content data in blast furnace hot metal based on k-means++

Linzi YIN1(),Yuyin GUAN1,Zhaohui JIANG2,Xuemei XU1   

  1. 1.College of Physics and Electronics, Central South University, Changsha 410012, Hunan, China
    2.School of Automation, Central South University, Changsha 410083, Hunan, China
  • Received:2019-10-07 Revised:2020-05-16 Online:2020-08-05 Published:2020-08-05
  • Contact: Linzi YIN

基于k-means++的高炉铁水硅含量数据优选方法

尹林子1(),关羽吟1,蒋朝辉2,许雪梅1   

  1. 1.中南大学物理与电子学院,湖南 长沙 410012
    2.中南大学自动化学院,湖南 长沙 410083
  • 通讯作者: 尹林子
  • 作者简介:尹林子(1980—),男,博士,副教授,yinlinzi@csu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61773406);国家自然科学基金青年项目(61502538)

Abstract:

High-quality data sets are the basis for accurate prediction of silicon content in blast furnace hot metal. There are some difficulties in processing the silicon content in hot metal. One challenge is the uneven recording, especially multiple silicon contents have a large fluctuation in some sample periods. Another is that silicon content is difficult to correlate with input variables. Aiming at these problems, we proposed an optimal method of selecting silicon content data in hot metal based on k-means++ clustering algorithm. Firstly, the fast clustering ability of k-means++ is utilized to divide samples to represent different furnace conditions. Secondly, the frequency histogram of the silicon content of each cluster is counted to determine the high frequency interval. Finally, using the high frequency range as the criterion, we select the best silicon content value associated with the sample. Taking a 2650 m3 blast furnace in a certain steel works as an example, established the deep learning models respectively based on multi-layer perceptron and LSTM for prediction. The results indicated that compared with the traditional averaging method, the mean square error (MSE) can be reduced by 0.003 and the hit rate is increased by more than 10%. Thus, this method has a good guiding significance for preprocessing the silicon content data in hot metal.

Key words: prediction, dynamic modeling, neural networks, blast furnace, silicon content in hot metal, optimal selecting data, k-means++, deep learning

摘要:

优质数据集是实现高炉铁水硅含量准确预报的基础。针对铁水硅含量数据记录不均衡,特别是部分样本周期内存在多个硅含量值且波动较大,难以与输入变量进行合理关联等难题,提出了一种基于k-means++聚类算法的铁水硅含量数据优选方法。该方法首先利用k-means++的快速聚类能力,将样本分簇,用以表征不同的炉况;其次统计各簇硅含量频数直方图,由此确定高频区间;最后以高频区间为标准,遴选与样本关联的最佳硅含量值。以某钢铁厂2650 m3的高炉为例,分别建立基于多层感知器和LSTM的深度学习模型进行预测,结果表明,该优选方法处理的数据与传统均值法相比,均方误差可减少0.003,命中率提高10%以上,对铁水硅含量数据的预处理具有较好的指导意义。

关键词: 预测, 动态建模, 神经网络, 高炉炼铁, 铁水硅含量, 数据优选, k-means++, 深度学习

CLC Number: