CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3060-3070.DOI: 10.11949/0438-1157.20191379
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Kuan YANG(),Changqi YAN(),Xiaxin CAO
Received:
2019-11-13
Revised:
2020-03-20
Online:
2020-07-05
Published:
2020-07-05
Contact:
Changqi YAN
通讯作者:
阎昌琪
作者简介:
杨宽(1992—),男,博士研究生,基金资助:
CLC Number:
Kuan YANG, Changqi YAN, Xiaxin CAO. Subcooled flow boiling resistance characteristics in narrow rectangular channel under natural circulation condition[J]. CIESC Journal, 2020, 71(7): 3060-3070.
杨宽, 阎昌琪, 曹夏昕. 自然循环窄矩形通道内过冷沸腾两相摩擦阻力特性[J]. 化工学报, 2020, 71(7): 3060-3070.
Add to citation manager EndNote|Ris|BibTeX
测量装置 | 型号 | 量程 | 精度 | 响应时间 |
---|---|---|---|---|
电磁流量计 | 科隆OPTIFLUX4000F | -0.1~1.0 m3/h | 0.2% | 5ms |
差压传感器1 | 横河EJA110E | -1.0~1.0 kPa | 0.055% | 90ms |
差压传感器2 | 横河EJA110E | -2.0~2.0 kPa | 0.055% | 90ms |
差压传感器3 | 罗斯蒙特3051CD | -3.0~5.0 kPa | 0.075% | 100ms |
Table 1 Parameters of measurement instruments
测量装置 | 型号 | 量程 | 精度 | 响应时间 |
---|---|---|---|---|
电磁流量计 | 科隆OPTIFLUX4000F | -0.1~1.0 m3/h | 0.2% | 5ms |
差压传感器1 | 横河EJA110E | -1.0~1.0 kPa | 0.055% | 90ms |
差压传感器2 | 横河EJA110E | -2.0~2.0 kPa | 0.055% | 90ms |
差压传感器3 | 罗斯蒙特3051CD | -3.0~5.0 kPa | 0.075% | 100ms |
实验参数 | 范围 |
---|---|
系统压力 | 0.1~0.3 MPa |
入口过冷度 | 20~70℃ |
热通量 | 80~250 kW/m2 |
质量流速 | 0~500 kg/(m2·s) |
Table 2 Range of experimental parameters
实验参数 | 范围 |
---|---|
系统压力 | 0.1~0.3 MPa |
入口过冷度 | 20~70℃ |
热通量 | 80~250 kW/m2 |
质量流速 | 0~500 kg/(m2·s) |
模型 | MRE/% | Ω/% |
---|---|---|
McAdams模型[ | 18.85 | 85.71 |
Dukler模型[ | 20.681 | 82.14 |
Beattie and Whalley模型[ | 16.67 | 96.43 |
Awad and Muzychka模型[ | 18.80 | 85.71 |
Table 3 Comparison of calculation results of homogeneous models with experimental data
模型 | MRE/% | Ω/% |
---|---|---|
McAdams模型[ | 18.85 | 85.71 |
Dukler模型[ | 20.681 | 82.14 |
Beattie and Whalley模型[ | 16.67 | 96.43 |
Awad and Muzychka模型[ | 18.80 | 85.71 |
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm C模型[ | 17.41 | 85.71 |
王广飞关系式[ | 88.13 | 0 |
Mishiba and Hibiki模型[ | 34.80 | 28.57 |
Lee and Lee模型[ | 36.52 | 32.14 |
Sun and Mishiba模型[ | 12.21 | 100 |
Zhang and Mishiba模型[ | 15.38 | 85.71 |
Table 4 Comparison of calculation results of ?l2 based models with experimental data
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm C模型[ | 17.41 | 85.71 |
王广飞关系式[ | 88.13 | 0 |
Mishiba and Hibiki模型[ | 34.80 | 28.57 |
Lee and Lee模型[ | 36.52 | 32.14 |
Sun and Mishiba模型[ | 12.21 | 100 |
Zhang and Mishiba模型[ | 15.38 | 85.71 |
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm B模型[ | 11.08 | 96.43 |
Muller-Steinhagen and Heck模型[ | 19.28 | 85.71 |
Tran模型[ | 12.28 | 96.43 |
Table 5 Comparison of calculation results of ?lo2 based models with experimental data
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm B模型[ | 11.08 | 96.43 |
Muller-Steinhagen and Heck模型[ | 19.28 | 85.71 |
Tran模型[ | 12.28 | 96.43 |
1 | Kandlikar S G. Two-phase flow patterns, pressure drop, and heat transfer during boiling in minichannel flow passages of compact evaporators[J]. Heat Transfer Engineering, 2002, 23(1): 5-23. |
2 | Ye C. China advanced research reactor (CARR): a new reactor to be built in China for neutron scattering studies[J]. Physica B: Condensed Matter, 1997, 241: 48-49. |
3 | Gong D X, Huang S F, Wang G B, et al. Heat transfer calculation on plate-type fuel assembly of high flux research reactor[J]. Science and Technology of Nuclear Installations, 2015, 2015: 1-13. |
4 | 王广飞, 阎昌琪, 孙立成, 等. 窄矩形通道内两相流动压降特性研究[J]. 原子能科学技术, 2011, 45(6): 677-681. |
Wang G F, Yan C Q, Sun L C, et al. Resistance characteristics of two-phase flow through narrow rectangular duct[J]. Atomic Energy Science and Technology, 2011, 45(6): 677-681. | |
5 | 王洋, 阎昌琪, 孙立成, 等. 矩形通道内气水两相流摩擦阻力计算模型[J]. 原子能科学技术, 2013, 47(10): 1793-1798. |
Wang Y, Yan C Q, Sun L C, et al. Model for calculating frictional resistance of air-water two-phase flow in rectangular channels[J]. Atomic Energy Science and Technology, 2013, 47(10): 1793-1798. | |
6 | 金光远, 阎昌琪, 孙立成, 等. 矩形通道内两相流动阻力特性及计算方法[J]. 原子能科学技术, 2013, 47(5): 740-744. |
Jin G Y, Yan C Q, Sun L C, et al. Resistance characteristic and calculating method of two-phase flow in rectangular channel[J]. Atomic Energy Science and Technology, 2013, 47(5): 740-744. | |
7 | 秦胜杰, 陈炳德, 闫晓, 等. 小宽高比矩形通道两相阻力特性研究[J]. 原子能科学技术, 2013, 47(1): 70-74. |
Qin S J, Chen B D, Yan X, et al. Two phase pressure drop characteristics in rectangular channel with low aspect ratio[J]. Atomic Energy Science and Technology, 2013, 47(1): 71-74. | |
8 | Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
9 | 刘传成, 阎昌琪, 孙立成, 等. 矩形窄通道内流动沸腾阻力实验与计算方法研究[J]. 原子能科学技术, 2012, 46(5): 537-541. |
Liu C C, Yan C Q, Sun L C, et al. Experimental and methodological research on pressure drop of flow boiling in narrow rectangular channel[J]. Atomic Energy Science and Technology, 2012, 46(5): 537-541. | |
10 | 孙奇, 赵华, 郗昭, 等. 低流速过冷沸腾压降实验与计算方法研究[J]. 核动力工程, 2005, 26(4): 305-311. |
Sun Q, Zhao H, Xi Z, et al. Experimental and predictive study of pressure drop in low-flow sub-cooled boiling[J]. Nuclear Power Engineering, 2005, 26(4): 305-311. | |
11 | 孙奇, 杨瑞昌, 覃世伟, 等. 过冷沸腾蒸汽-水两相流真实含汽率模型[J]. 清华大学学报(自然科学版), 2004, 44(11): 1580-1584. |
Sun Q, Yang R C, Qin S W, et al. Prediction of true mass quality in subcooled steam-water flow boiling[J]. Journal of Tsinghua University, 2004, 44(11): 1580-1584. | |
12 | 颜建国, 郭鹏程, 马嘉琦, 等. 高热流条件下过冷沸腾流动阻力特性试验研究[J]. 化工学报, 2019, 70(11): 4257-4267. |
Yan J G, Guo P C, Ma J Q, et al. Experimental study on pressure drop for subcooled water flow boiling under high heat fluxes[J]. CIESC Journal, 2019, 70(11): 4257-4267. | |
13 | 赵楠, 张旺, 杨立新. 不同宽度窄缝通道过冷沸腾[J]. 化工学报, 2016, 67: 47-56. |
Zhao N, Zhang W, Yang L X. Subcooled boiling in narrow channels with different sizes[J]. CIESC Journal, 2016, 67: 47-56. | |
14 | 田春平, 阎昌琪, 王建军, 等. 倾斜对窄矩形通道内流动阻力特性影响[J]. 化工学报, 2016, 67(9): 3633-3639. |
Tian C P, Yan C Q, Wang J J, et al. Effect of inclination on flow resistance characteristic in narrow rectangular channel[J]. CIESC Journal, 2016, 67(9): 3633-3639. | |
15 | Shah R K, London A L. Laminar Flow Forced Convection in Ducts: a Source Book for Compact Heat Exchanger Analytical Data[M]. New York: Academic Press, 2014. |
16 | 孙奇, 杨瑞昌. 低流速净蒸汽产生点模型预测过冷沸腾空泡率[J]. 热能动力工程, 2004, 19(2): 124-126. |
Sun Q, Yang R C. Prediction of subcooled-boiling void fraction by means of a model based on a low flow-rate net vapor generation[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(2): 124-126. | |
17 | Rouhani S Z. Calculation of steam volume fraction in subcooled boiling[J]. Journal of Heat Transfer, 1968, 90(1): 158-164. |
18 | Chexal B, Lellouche G, Horowitz J, et al. A void fraction correlation for generalized applications[J]. Progress in Nuclear Energy, 1992, 27(4): 255-295. |
19 | Coddington P, Macian R. A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models[J]. Nuclear Engineering and Design, 2002, 215(3): 199-216. |
20 | McAdams W H. Vaporization inside horizontal tubes(Ⅱ): Benzene oil mixtures[J]. Trans. ASME, 1942, 64: 193-200. |
21 | Dukler A E, Wicks M, Cleveland R G. Frictional pressure drop in two-phase flow(Ⅱ): An approach through similarity analysis[J]. AIChE Journal, 1964, 10(1): 44-51. |
22 | Beattie D, Whalley P B. A simple two-phase frictional pressure drop calculation method[J]. International Journal of Multiphase Flow, 1982, 8(1): 83-87. |
23 | Awad M M, Muzychka Y S. Effective property models for homogeneous two-phase flows[J]. Experimental Thermal and Fluid Science, 2008, 33(1): 106-113. |
24 | Mishima K, Hibiki T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4): 703-712. |
25 | Lee H J, Lee S Y. Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights[J]. International Journal of Multiphase Flow, 2001, 27(5): 783-796. |
26 | Sun L, Mishima K. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels[J]. International Journal of Multiphase Flow, 2009, 35(1): 47-54. |
27 | Zhang W, Hibiki T, Mishima K. Correlations of two-phase frictional pressure drop and void fraction in mini-channel[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 453-465. |
28 | Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. |
29 | Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308. |
30 | Tran T N, Chyu M, Wambsganss M W, et al. Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development[J]. International Journal of Multiphase Flow, 2000, 26(11): 1739-1754. |
31 | Baburajan P K, Bisht G S, Gupta S K, et al. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions[J]. Nuclear Engineering and Design, 2013, 255: 169-179. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[3] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[4] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[5] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[8] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[9] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[10] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[11] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[12] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[13] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[14] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||