CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2391-2403.DOI: 10.11949/0438-1157.20230300
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Qichao LIU(), Yunlong ZHOU(), Cong CHEN
Received:
2023-03-27
Revised:
2023-05-17
Online:
2023-07-27
Published:
2023-06-05
Contact:
Yunlong ZHOU
通讯作者:
周云龙
作者简介:
刘起超(1991—),男,博士,讲师,lqcliuqichao@126.com
基金资助:
CLC Number:
Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration[J]. CIESC Journal, 2023, 74(6): 2391-2403.
刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403.
测量 参数 | 仪器 | 量程 | 精度 | 相对 不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
加速度 | 加速度传感器 | ±1 g | 0.5% | 0.07~16.02 |
含液量 | 量尺 | 3 m | 1 mm | 0.06~3.2 |
Table 1 Experimental instrument and uncertainty
测量 参数 | 仪器 | 量程 | 精度 | 相对 不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
加速度 | 加速度传感器 | ±1 g | 0.5% | 0.07~16.02 |
含液量 | 量尺 | 3 m | 1 mm | 0.06~3.2 |
模型 | 公式 |
---|---|
Armand[ | |
Massena[ | |
Nishino[ | |
Greskovich[ | |
Chisholm[ | |
Czop[ | |
Hajal[ |
Table 2 k-β models
模型 | 公式 |
---|---|
Armand[ | |
Massena[ | |
Nishino[ | |
Greskovich[ | |
Chisholm[ | |
Czop[ | |
Hajal[ |
模型 | 滑移参数 |
---|---|
Lockhart[ | B1=0.28,B2=0.64,B3=0.36,B4=0.07 |
Fauske[ | B1=1,B2=1,B3=0.5,B4=0 |
Thom[ | B1=1,B2=1,B3=0.89,B4=0.18 |
Zivi[ | B1=1,B2=1,B3=0.67,B4=0 |
Turner[ | B1=1,B2=0.72,B3=0.4,B4=0.08 |
Baroczy[ | B1=1,B2=0.74,B3=0.65,B4=0.13 |
Smith[ | B2=1,B3=1,B4=0 |
Chisholm[ | |
Spedding[ | B1=2.22,B2=0.65,B3=0.65,B4=0 |
Chen[ | B1=0.18,B2=0.6,B3=0.33,B4=0.07 |
Hamersma[ | B1=0.26,B2=0.67,B3=0.33,B4=0 |
Petalaz[ |
Table 3 Slip ratio models
模型 | 滑移参数 |
---|---|
Lockhart[ | B1=0.28,B2=0.64,B3=0.36,B4=0.07 |
Fauske[ | B1=1,B2=1,B3=0.5,B4=0 |
Thom[ | B1=1,B2=1,B3=0.89,B4=0.18 |
Zivi[ | B1=1,B2=1,B3=0.67,B4=0 |
Turner[ | B1=1,B2=0.72,B3=0.4,B4=0.08 |
Baroczy[ | B1=1,B2=0.74,B3=0.65,B4=0.13 |
Smith[ | B2=1,B3=1,B4=0 |
Chisholm[ | |
Spedding[ | B1=2.22,B2=0.65,B3=0.65,B4=0 |
Chen[ | B1=0.18,B2=0.6,B3=0.33,B4=0.07 |
Hamersma[ | B1=0.26,B2=0.67,B3=0.33,B4=0 |
Petalaz[ |
模型 | 公式 |
---|---|
Nicklin[ | |
Hughmark[ | |
Gregory[ | |
Rouhani[ | 如果 如果 |
Bonnecaze[ | |
Dix[ | |
Mattar[ | |
Greskovich[ | |
Sun[ | |
Jowitt[ | |
Kokal[ | |
Bestion[ |
Table 4 Drift flux models
模型 | 公式 |
---|---|
Nicklin[ | |
Hughmark[ | |
Gregory[ | |
Rouhani[ | 如果 如果 |
Bonnecaze[ | |
Dix[ | |
Mattar[ | |
Greskovich[ | |
Sun[ | |
Jowitt[ | |
Kokal[ | |
Bestion[ |
模型 | 公式 |
---|---|
Sterman[ | |
Flanigan[ | |
Neal[ | |
Walli[ | |
El-Boher[ | |
Huq[ | |
Graham[ | |
Cioncolini[ |
Table 5 Empirical formula models
模型 | 公式 |
---|---|
Sterman[ | |
Flanigan[ | |
Neal[ | |
Walli[ | |
El-Boher[ | |
Huq[ | |
Graham[ | |
Cioncolini[ |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Armand[ | 15.0 | 21.2 | 8.6 | 9.4 | 11.9 |
Massena[ | 15.0 | 21.2 | 8.5 | 9.1 | 11.8 |
Nishino[ | 34.8 | 27.9 | 18.6 | 9.2 | 23.0 |
Greskovich[ | 15.6 | 27.5 | 10.3 | 10.7 | 13.7 |
Chisholm[ | 16.2 | 19.5 | 9.9 | 7.5 | 12.4 |
Czop[ | 37.0 | 59.3 | 16.4 | 11.4 | 26.3 |
Hajal[ | 11.5 | 27.3 | 8.8 | 7.6 | 11.4 |
Table 6 The MARD of k-β models
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Armand[ | 15.0 | 21.2 | 8.6 | 9.4 | 11.9 |
Massena[ | 15.0 | 21.2 | 8.5 | 9.1 | 11.8 |
Nishino[ | 34.8 | 27.9 | 18.6 | 9.2 | 23.0 |
Greskovich[ | 15.6 | 27.5 | 10.3 | 10.7 | 13.7 |
Chisholm[ | 16.2 | 19.5 | 9.9 | 7.5 | 12.4 |
Czop[ | 37.0 | 59.3 | 16.4 | 11.4 | 26.3 |
Hajal[ | 11.5 | 27.3 | 8.8 | 7.6 | 11.4 |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Lockhart[ | 37.7 | 21.8 | 24.0 | 13.1 | 26.2 |
Fauske[ | 89.3 | 92.1 | 75.5 | 52.7 | 78.1 |
Thom[ | 51.3 | 55.6 | 25.3 | 6.7 | 33.5 |
Zivi[ | 71.7 | 76.9 | 47.3 | 21.0 | 53.9 |
Turner[ | 80.5 | 80.3 | 67.8 | 50.8 | 70.5 |
Baroczy[ | 44.8 | 37.2 | 26.8 | 12.2 | 31.1 |
Smith[ | 18.6 | 17.5 | 11.1 | 7.4 | 13.4 |
Chisholm[ | 16.1 | 19.5 | 9.8 | 7.4 | 12.4 |
Spedding[ | 34.0 | 17.1 | 20.9 | 10.8 | 22.9 |
Chen[ | 18.1 | 18.2 | 12.2 | 7.8 | 13.9 |
Hamersma[ | 38.9 | 25.2 | 24.0 | 12.3 | 26.8 |
Petalaz[ | 42.0 | 181.0 | 15.9 | 23.6 | 42.5 |
Table 7 The MARD of slip ratiomodels
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Lockhart[ | 37.7 | 21.8 | 24.0 | 13.1 | 26.2 |
Fauske[ | 89.3 | 92.1 | 75.5 | 52.7 | 78.1 |
Thom[ | 51.3 | 55.6 | 25.3 | 6.7 | 33.5 |
Zivi[ | 71.7 | 76.9 | 47.3 | 21.0 | 53.9 |
Turner[ | 80.5 | 80.3 | 67.8 | 50.8 | 70.5 |
Baroczy[ | 44.8 | 37.2 | 26.8 | 12.2 | 31.1 |
Smith[ | 18.6 | 17.5 | 11.1 | 7.4 | 13.4 |
Chisholm[ | 16.1 | 19.5 | 9.8 | 7.4 | 12.4 |
Spedding[ | 34.0 | 17.1 | 20.9 | 10.8 | 22.9 |
Chen[ | 18.1 | 18.2 | 12.2 | 7.8 | 13.9 |
Hamersma[ | 38.9 | 25.2 | 24.0 | 12.3 | 26.8 |
Petalaz[ | 42.0 | 181.0 | 15.9 | 23.6 | 42.5 |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Nicklin[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Hughmark[ | 15.0 | 21.4 | 8.5 | 9.4 | 11.9 |
Gregory[ | 14.4 | 21.8 | 8.1 | 9.0 | 11.5 |
Rouhani[ | 19.0 | 20.9 | 10.1 | 9.6 | 13.8 |
Bonnecaze[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Dix[ | 41.0 | 19.2 | 22.3 | 17.1 | 26.6 |
Mattar[ | 20.9 | 20.5 | 11.0 | 10.1 | 14.8 |
Greskovich[ | 16.2 | 27.5 | 10.2 | 10.5 | 13.9 |
Sun[ | 16.8 | 31.8 | 17.4 | 19.1 | 19.0 |
Jowitt[ | 20.9 | 20.2 | 11.4 | 10.7 | 15.0 |
Kokal[ | 40.5 | 20.1 | 18.6 | 11.4 | 24.1 |
Bestion[ | 58.2 | 29.0 | 29.1 | 12.7 | 35.2 |
Table 8 The MARD of drift flux models
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Nicklin[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Hughmark[ | 15.0 | 21.4 | 8.5 | 9.4 | 11.9 |
Gregory[ | 14.4 | 21.8 | 8.1 | 9.0 | 11.5 |
Rouhani[ | 19.0 | 20.9 | 10.1 | 9.6 | 13.8 |
Bonnecaze[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Dix[ | 41.0 | 19.2 | 22.3 | 17.1 | 26.6 |
Mattar[ | 20.9 | 20.5 | 11.0 | 10.1 | 14.8 |
Greskovich[ | 16.2 | 27.5 | 10.2 | 10.5 | 13.9 |
Sun[ | 16.8 | 31.8 | 17.4 | 19.1 | 19.0 |
Jowitt[ | 20.9 | 20.2 | 11.4 | 10.7 | 15.0 |
Kokal[ | 40.5 | 20.1 | 18.6 | 11.4 | 24.1 |
Bestion[ | 58.2 | 29.0 | 29.1 | 12.7 | 35.2 |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Sterman[ | 37.1 | 67.3 | 73.1 | 179.2 | 77.0 |
Flanigan[ | 58.0 | 23.5 | 27.9 | 14.0 | 34.2 |
Neal[ | 25.4 | 16.0 | 20.6 | 14.4 | 20.6 |
Wallis[ | 21.9 | 57.5 | 39.5 | 39.9 | 36.5 |
El-Boher[ | 30.0 | 49.1 | 32.6 | 42.8 | 35.1 |
Huq[ | 21.0 | 16.1 | 12.5 | 7.9 | 14.7 |
Graham[ | 21.9 | 39.4 | 11.3 | 11.6 | 17.5 |
Cioncolini[ | 8.7 | 55.6 | 8.5 | 8.6 | 13.7 |
Table 9 The MARD of empirical formula models
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Sterman[ | 37.1 | 67.3 | 73.1 | 179.2 | 77.0 |
Flanigan[ | 58.0 | 23.5 | 27.9 | 14.0 | 34.2 |
Neal[ | 25.4 | 16.0 | 20.6 | 14.4 | 20.6 |
Wallis[ | 21.9 | 57.5 | 39.5 | 39.9 | 36.5 |
El-Boher[ | 30.0 | 49.1 | 32.6 | 42.8 | 35.1 |
Huq[ | 21.0 | 16.1 | 12.5 | 7.9 | 14.7 |
Graham[ | 21.9 | 39.4 | 11.3 | 11.6 | 17.5 |
Cioncolini[ | 8.7 | 55.6 | 8.5 | 8.6 | 13.7 |
1 | Smith S L. Void fraction in two-phase flow: a correlation based upon an equal velocity head model[J]. Proceedings of the Institution of Mechanical Engineers, 1969, 184(1): 647-664. |
2 | Bankoff S G. A variable density single-fluid model for two-phase flow with particular reference to steam-water flow[J]. Journal of Heat Transfer, 1960, 82(4): 265-272. |
3 | 常立家, 岳丹婷, 吴桂涛. 两相流滑动比的最小熵增模型[J]. 大连海事大学学报, 2000, 26(1): 105-108. |
Chang L J, Yue D T, Wu G T. The minimum entropy production model of slip ratio in two-phase flow[J]. Journal of Dalian Maritime University, 2000, 26(1): 105-108. | |
4 | Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. |
5 | Gao Z K, Hou L H, Dang W D, et al. Multitask-based temporal-channelwise CNN for parameter prediction of two-phase flows[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6329-6336. |
6 | Gao Z K, Li M Y, Hou L H, et al. Stage-wise densely connected network for parameter measurement of two-phase flows[J]. IEEE Sensors Journal, 2021, 21(16): 18123-18131. |
7 | Hazare S R, Patil C S, Vala S V, et al. Predictive analysis of gas hold-up in bubble column using machine learning methods[J]. Chemical Engineering Research and Design, 2022, 184: 724-739. |
8 | Li C F, Liu M M, Zhao N, et al. Void fraction measurement using modal decomposition and ensemble learning in vertical annular flow[J]. Chemical Engineering Science, 2022, 247: 116929. |
9 | Chu W J, Liu Y, Pan L Q, et al. Study on measure approach of void fraction in narrow channel based on fully convolutional neural network[J]. Frontiers in Energy Research, 2021, 9: 636813. |
10 | Xiao R G, Li K, Sun L Y, et al. The prediction of liquid holdup in horizontal pipe with BP neural network[J]. Energy Science & Engineering, 2020, 8(6): 2159-2168. |
11 | 于凯秋, 曹夏昕, 阎昌琪, 等. 摇摆状态下两相流空泡份额变化规律分析[J]. 哈尔滨工程大学学报, 2008, 29(11): 1250-1254. |
Yu K Q, Cao X X, Yan C Q, et al. Analysis of void fraction changes of two-phase flow in rolling tubes[J]. Journal of Harbin Engineering University, 2008, 29(11): 1250-1254. | |
12 | 田道贵, 孙立成, 阎昌琪, 等. 摇摆状态下两相流动局部参数光学探针测量实验[J]. 核动力工程, 2013, 34(4): 95-99. |
Tian D G, Sun L C, Yan C Q, et al. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition[J]. Nuclear Power Engineering, 2013, 34(4): 95-99. | |
13 | 许升. 摇摆条件棒束通道相态特性的数值研究[D]. 重庆: 重庆大学, 2017. |
Xu S. Numerical study on phase characteristics in rod bundle under rolling condition[D]. Chongqing: Chongqing University, 2017. | |
14 | 金光远. 摇摆对矩形通道内两相流动阻力特性影响的研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
Jin G Y. Research on frictional resistance of two-phase flow in rectangular ducts in rolling motion[D]. Harbin: Harbin Engineering University, 2014. | |
15 | Xiao X, Zhu Q Z, Chen S W, et al. Investigation on two-phase distribution in a vibrating annulus[J]. Annals of Nuclear Energy, 2017, 108: 67-78. |
16 | Chen S W, Hibiki T, Ishii M, et al. Experimental investigation of horizontal forced-vibration effect on air-water two-phase flow[J]. International Journal of Heat and Fluid Flow, 2017, 65: 33-46. |
17 | 刘起超, 周云龙, 陈聪. 基于CEEMDAN和概率神经网络的起伏振动气液两相流型识别[J]. 仪器仪表学报, 2021, 42(10): 84-93. |
Liu Q C, Zhou Y L, Chen C. Flow pattern identification of fluctuating vibration gas liquid two phase flow based on CEEMDAN and probabilistic neural network[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 84-93. | |
18 | Massel S R. Ocean Surface Waves: Their Physics and Prediction[M]. Singapore: World Scientific, 1996. |
19 | 《中国大百科全书》总编委会、《中国大百科全书》编辑部. 中国大百科全书: 精粹本[M]. 北京: 中国大百科全书出版社, 2002: 243. |
Chief Editor of the Encyclopedia of China, Editorial Department of Encyclopedia of China. Encyclopedia of China[M]. Beijing: Encyclopedia of China Publishing House, 2002: 243. | |
20 | Yao C, Li H X, Xue Y Q, et al. Investigation on the frictional pressure drop of gas liquid two-phase flows in vertical downward tubes[J]. International Communications in Heat and Mass Transfer, 2018, 91: 138-149. |
21 | Xue Y Q, Li H X, Hao C Y, et al. Investigation on the void fraction of gas-liquid two-phase flows in vertically-downward pipes[J]. International Communications in Heat and Mass Transfer, 2016, 77: 1-8. |
22 | 陆廷济. 物理实验教程[M]. 上海: 同济大学出版社, 2000: 14-15. |
Lu T J. Physical Experiment Course[M]. Shanghai: Tongji University Press, 2000: 14-15. | |
23 | Armand A A. The resistance during the movement of a two-phase system in horizontal pipes[J]. Izvestiya Vsesoyuznogo Teplotekhnicheskogo Instituta, 1946, 1: 16-23. |
24 | Massena W A. Steam-water pressure drop and critical discharge flow—a digital computer program, hanford atomic products operation[R]. General Electric Co. Hanford Atomic Products Operation, Richland, Wash, 1960: HW-65706. |
25 | Nishino H, Yamazaki Y. A new method of evaluating steam volume fractions in boiling systems[J]. Journal of the Atomic Energy Society of Japan, 1963, 5(1): 39-46. |
26 | Greskovich E J, Cooper W T. Correlation and prediction of gas-liquid holdups in inclined upflows[J]. AIChE Journal, 1975, 21(6): 1189-1192. |
27 | Chisholm D. Two-Phase Flow in Pipelines and Heat Exchangers[M]. London: G. Godwin in Association with Institution of Chemical Engineers, 1983. |
28 | Czop V, Barbier D, Dong S. Pressure drop, void fraction and shear stress measurements in an adiabatic two-phase flow in a coiled tube[J]. Nuclear Engineering and Design, 1994, 149(1/2/3): 323-333. |
29 | El Hajal J, Thome J R, Cavallini A. Condensation in horizontal tubes (part 1): Two-phase flow pattern map[J]. International Journal of Heat and Mass Transfer, 2003, 46(18): 3349-3363. |
30 | Lockhart R, Martinelli R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48. |
31 | Isbin H S, Fauske H. Critical two-phase, steam-water flows[R]. United States, 1960. |
32 | Thom J R S. Prediction of pressure drop during forced circulation boiling of water[J]. International Journal of Heat and Mass Transfer, 1964, 7(7): 709-724. |
33 | Levy S. Discussion: “estimation of steady-state steam void-fraction by means of the principle of minimum entropy production”[J]. Journal of Heat Transfer, 1964, 86(2): 251-252. |
34 | Turner J M, Wallis G B. Two-phase flow and boiling heat transfer. The separate-cylinders model of two-phase flow[R]. USA, 1965. |
35 | Baroczy C J. A systemic correlation for two phase pressure drop[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 232-249. |
36 | Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. |
37 | Spedding P L, Chen J J J. Holdup in two phase flow[J]. International Journal of Multiphase Flow, 1984, 10(3): 307-339. |
38 | Chen J J J. A further examination of void fraction in annular two-phase flow[J]. International Journal of Heat and Mass Transfer, 1986, 29(11): 1760-1763. |
39 | Hamersma P J, Hart J. A pressure drop correlation for gas/liquid pipe flow with a small liquid holdup[J]. Chemical Engineering Science, 1987, 42(5): 1187-1196. |
40 | Petalas N, Aziz K. A mechanistic model for multiphase flow in pipes[J]. Journal of Canadian Petroleum Technology, 2000, 39(6): 43-54. |
41 | Nicklin D J. Two-phase flow in vertical tubes[J]. Transactions of the Institution of Chemical Engineers, 1962, 40: 61-68. |
42 | Hughmark G A. Holdup and heat transfer in horizontal slug gas-liquid flow[J]. Chemical Engineering Science, 1965, 20(12): 1007-1010. |
43 | Gregory G A, Nicholson M K, Aziz K. Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow[J]. International Journal of Multiphase Flow, 1978, 4(1): 33-39. |
44 | Rouhani S Z, Axelsson E. Calculation of void volume fraction in the subcooled and quality boiling regions[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 383-393. |
45 | Bonnecaze R H, Erskine Jr W, Greskovich E J. Holdup and pressure drop for two-phase slug flow in inclined pipelines[J]. AIChE Journal, 1971, 17(5): 1109-1113. |
46 | Dix G E. Vapor void fractions for forced convection with subcooled boiling at low flow rates[D]. Berkeley, CA, USA: University of California, Berkeley, 1972. |
47 | Mattar L, Gregory G. Air-oil slug flow in an upward-inclined pipe (Ⅰ): Slug velocity, holdup and pressure gradient[J]. Journal of Canadian Petroleum Technology, 1974, 13(1): 69-76. |
48 | Sun K H, Duffey R B, Peng C M. A thermal-hydraulic analysis of core uncovery[C]//Proceedings of the 19th National Heat Transfer Conference. Orlando, Florida, 1980: 1-19. |
49 | Jowitt D, Cooper C A, Pearson K G. The thetis 80% blocked cluster experiment (part 5): Level swell experiments[R]. US Government Report on Science and Technology, 1984. |
50 | Kokal S L, Stanislav J F. An experimental study of two-phase flow in slightly inclined pipes (Ⅱ): Liquid holdup and pressure drop[J]. Chemical Engineering Science, 1989, 44(3): 681-693. |
51 | Bestion D. The physical closure laws in the CATHARE code[J]. Nuclear Engineering and Design, 1990, 124(3): 229-245. |
52 | Sterman L S. The generalization of experimental data concerning the bubbling of vapor through liquid[J]. Technical Physics, 1956, 1: 1479-1485. |
53 | Flanigan O. Effect of uphill flow on pressure dop in design of two-phase gathering systems[J]. Oil and Gas Journal, 1958, 56: 132-141. |
54 | Neal L G, Bankoff S G. Local parameters in cocurrent mercury-nitrogen flow: parts Ⅰ and Ⅱ[J]. AIChE Journal, 1965, 11(4): 624-635. |
55 | Wallis G B. One-Dimensional Two-Phase Flow[M]. New York: McGraw-Hill, 1969. |
56 | El-Boher A, Lesin S, Unger Y, et al. Experimental studies of two phase liquid metal gas flows in vertical pipes[C]//Proceedings of the 1st World Conference on Experimental Heat Transfer. Dubrovnik, Yugoslavia, 1988. |
57 | Huq R, Loth J L. Analytical two-phase flow void prediction method[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(1): 139-144. |
58 | Yashar D A, Wilson M J, Kopke H R, et al. An investigation of refrigerant void fraction in horizontal, microfin tubes[J]. HVAC&R Research, 2001, 7(1): 67-82. |
59 | Cioncolini A, Thome J R. Void fraction prediction in annular two-phase flow[J]. International Journal of Multiphase Flow, 2012, 43: 72-84. |
60 | 蔡博. 复杂截面螺旋通道内气液两相流流动特性研究[D]. 北京: 北京工业大学, 2018. |
Cai B. Study on flow characteristics of gas-liquid two-phase flow in spiral channel with complex cross section[D].Beijing: Beijing University of Technology, 2018. |
[1] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[2] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[3] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
[4] | Qiaoling SU, Junfeng WANG, Wei ZHANG, Shuiqing ZHAN, Tianyi WU. Experimental study on polarization motion characteristics of bubbles in a low conductivity working medium [J]. CIESC Journal, 2022, 73(9): 3861-3869. |
[5] | Mengxi LIU, Yiping FAN, Zihan YAN, Xiuying YAO, Chunxi LU. Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser [J]. CIESC Journal, 2022, 73(6): 2496-2513. |
[6] | Xiaogang SHI, Chengxiu WANG, Jinsen GAO, Xingying LAN. Numerical simulation study on influence of mesoscale structure in riser reactor [J]. CIESC Journal, 2022, 73(6): 2708-2721. |
[7] | Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics [J]. CIESC Journal, 2022, 73(4): 1501-1514. |
[8] | Yunlong ZHOU, Qichao LIU. Analysis and calculation of friction resistance of gas-liquid flow in inclined riser pipe under fluctuating vibration [J]. CIESC Journal, 2022, 73(2): 643-652. |
[9] | Rui YANG, Baojin ZHU, Chao LYU, Lei ZHANG, Yingsong XIAO. Study on flow pattern and transition mechanism of gas-liquid two-phase flow in swirl field under pulsating flow [J]. CIESC Journal, 2022, 73(10): 4389-4398. |
[10] | Juntao DAI, Li LIU, Shuai LIU, Hanyang GU, Ke WANG. Investigation of bubble behaviors in gas-liquid two-phase flow in helically coiled tube based on wire mesh sensor [J]. CIESC Journal, 2022, 73(10): 4377-4388. |
[11] | Yiyu CHEN, Chunying ZHU, Taotao FU, Youguang MA. Gas-liquid mass transfer and intensification in 3D-rhombus microchannel [J]. CIESC Journal, 2022, 73(1): 175-183. |
[12] | ZHANG Yi, ZHANG Guanmin, LIU Lei, LIANG Kai, QU Xiaohang, TIAN Maocheng. Gas-liquid falling film flow characteristics on surface of multi-row plane finned-tube heat exchanger: a 3D numerical study [J]. CIESC Journal, 2021, 72(S1): 278-294. |
[13] | Teng WANG, Qincheng BI, Miao GUI, Zhaohui LIU. Experimental study on void fraction distribution in liquid slug of vertical upward slug flow [J]. CIESC Journal, 2021, 72(9): 4584-4593. |
[14] | Jun XU, Zhifeng WANG, Kaijun HOU, Yongfu GAO, Yiping FAN, Chunxi LU. Experimental and theoretical study on gas-solid flow characteristics in feedstock injection zone of FCC riser with double-layer nozzles [J]. CIESC Journal, 2021, 72(8): 4019-4029. |
[15] | Jun XU, Yiping FAN, Xiaojie QIAN, Zihan YAN, Chunxi LU. Theoretical analysis of motion-diffusion characteristics in feed injection zone of FCC riser [J]. CIESC Journal, 2020, 71(4): 1450-1459. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||