CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3333-3344.DOI: 10.11949/0438-1157.20191524
• Energy and environmental engineering • Previous Articles Next Articles
Si LI1,2(),Kaifeng FAN1(),Qiyu HUANG3
Received:
2019-12-16
Revised:
2020-04-07
Online:
2020-07-05
Published:
2020-07-05
Contact:
Kaifeng FAN
通讯作者:
范开峰
作者简介:
李思(1988—),女,博士,讲师,基金资助:
CLC Number:
Si LI, Kaifeng FAN, Qiyu HUANG. New measurement methods for wax appearance temperature of petroleum fluids using NIRS and RI techniques[J]. CIESC Journal, 2020, 71(7): 3333-3344.
李思, 范开峰, 黄启玉. 利用NIRS和RI技术测试石油流体析蜡温度新方法[J]. 化工学报, 2020, 71(7): 3333-3344.
Add to citation manager EndNote|Ris|BibTeX
凝点/ ℃ | 含蜡量/ %(质量) | 沥青质/ %(质量) | 胶质/ %(质量) | 20℃时密度/ (kg·m-3) | 40℃时黏度/ (mPa·s) |
---|---|---|---|---|---|
33 | 21.42 | 0.21 | 9.00 | 857.0 | 28.40 |
Table 1 Basic properties of DJ crude oil
凝点/ ℃ | 含蜡量/ %(质量) | 沥青质/ %(质量) | 胶质/ %(质量) | 20℃时密度/ (kg·m-3) | 40℃时黏度/ (mPa·s) |
---|---|---|---|---|---|
33 | 21.42 | 0.21 | 9.00 | 857.0 | 28.40 |
波长/nm | 吸光度基线值 | 析蜡温度/℃ |
---|---|---|
600 | 0.0293 | 20.88 |
800 | 0.0113 | 20.82 |
1000 | 0.0194 | 20.79 |
1300 | 0.0474 | 20.78 |
1600 | 0.0825 | 20.77 |
Table 2 WAT results fitted at different wavelengths
波长/nm | 吸光度基线值 | 析蜡温度/℃ |
---|---|---|
600 | 0.0293 | 20.88 |
800 | 0.0113 | 20.82 |
1000 | 0.0194 | 20.79 |
1300 | 0.0474 | 20.78 |
1600 | 0.0825 | 20.77 |
沥青质含量0% | 沥青质含量2.0% | 沥青质含量5.0% | |||
---|---|---|---|---|---|
波长/nm | WAT/℃ | 波长/nm | WAT/℃ | 波长/nm | WAT/℃ |
600 | 21.13 | 1300 | 20.26 | 1000 | 20.23 |
700 | 21.12 | 1400 | 20.23 | 1050 | 20.07 |
800 | 21.11 | 1500 | 20.21 | 1100 | 19.94 |
900 | 21.10 | 1550 | 20.19 | 1150 | 19.82 |
1000 | 21.09 | 1600 | 20.18 | 1200 | 19.72 |
Table 3 WAT determined by different wave lengths of model oil samples with different asphaltenes contents
沥青质含量0% | 沥青质含量2.0% | 沥青质含量5.0% | |||
---|---|---|---|---|---|
波长/nm | WAT/℃ | 波长/nm | WAT/℃ | 波长/nm | WAT/℃ |
600 | 21.13 | 1300 | 20.26 | 1000 | 20.23 |
700 | 21.12 | 1400 | 20.23 | 1050 | 20.07 |
800 | 21.11 | 1500 | 20.21 | 1100 | 19.94 |
900 | 21.10 | 1550 | 20.19 | 1150 | 19.82 |
1000 | 21.09 | 1600 | 20.18 | 1200 | 19.72 |
油样 | 析蜡温度/℃ | ||
---|---|---|---|
1℃·min-1 | 5℃·min-1 | 10℃·min-1 | |
含蜡量10.0% | 22.67 | 22.16 | 22.00 |
含蜡量15.0% | 26.33 | 25.58 | 25.17 |
Table 4 WAT results of PM under different cooling rates
油样 | 析蜡温度/℃ | ||
---|---|---|---|
1℃·min-1 | 5℃·min-1 | 10℃·min-1 | |
含蜡量10.0% | 22.67 | 22.16 | 22.00 |
含蜡量15.0% | 26.33 | 25.58 | 25.17 |
油样 | 析蜡温度/℃ | ||||
---|---|---|---|---|---|
NIRS温度扫描 | NIRS波长扫描 | RI | PM | DSC | |
含蜡量5.0% | 14.88 | 15.04 | 16.1 | 17.25 | 14.75 |
含蜡量10.0% | 20.15 | 20.26 | 21.0 | 21.93 | 20.10 |
含蜡量15.0% | 23.56 | 23.75 | 24.4 | 25.58 | 23.31 |
DJ原油 | 48.63 | 47.71 | 47.9 | 50.33 | 45.95 |
Table 5 Comparison of WAT results of different measurement methods
油样 | 析蜡温度/℃ | ||||
---|---|---|---|---|---|
NIRS温度扫描 | NIRS波长扫描 | RI | PM | DSC | |
含蜡量5.0% | 14.88 | 15.04 | 16.1 | 17.25 | 14.75 |
含蜡量10.0% | 20.15 | 20.26 | 21.0 | 21.93 | 20.10 |
含蜡量15.0% | 23.56 | 23.75 | 24.4 | 25.58 | 23.31 |
DJ原油 | 48.63 | 47.71 | 47.9 | 50.33 | 45.95 |
测试方法 | 析蜡温度/℃ | 平均值/℃ | 标准差/℃ | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
温度扫描法 | 20.05 | 19.98 | 20.14 | 20.22 | 20.34 | 20.15 | 0.1264 |
波长扫描法 | 20.24 | 20.11 | 20.25 | 20.29 | 20.42 | 20.26 | 0.0995 |
RI | 21.0 | 21.1 | 21.0 | 21.0 | 20.9 | 21.0 | 0.0632 |
PM | 22.16 | 23.83 | 20.33 | 22.00 | 21.33 | 21.93 | 1.1479 |
DSC | 20.01 | 20.45 | 19.76 | 19.34 | 20.96 | 20.10 | 0.5592 |
Table 6 WAT results in repeatability test of different measurement methods
测试方法 | 析蜡温度/℃ | 平均值/℃ | 标准差/℃ | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
温度扫描法 | 20.05 | 19.98 | 20.14 | 20.22 | 20.34 | 20.15 | 0.1264 |
波长扫描法 | 20.24 | 20.11 | 20.25 | 20.29 | 20.42 | 20.26 | 0.0995 |
RI | 21.0 | 21.1 | 21.0 | 21.0 | 20.9 | 21.0 | 0.0632 |
PM | 22.16 | 23.83 | 20.33 | 22.00 | 21.33 | 21.93 | 1.1479 |
DSC | 20.01 | 20.45 | 19.76 | 19.34 | 20.96 | 20.10 | 0.5592 |
1 | 刘扬, 王志华, 成庆林, 等. 大庆原油管输结蜡规律与清管周期的确定[J]. 石油学报, 2012, 33(5): 174-179. |
Liu Y, Wang Z H, Cheng Q L, et al. The study of pipeline wax deposition law and pigging period for Daqing waxy crude oil[J]. Acta Petrolei Sinica, 2012, 33(5): 174-179. | |
2 | 李传宪, 蔡金洋, 程梁, 等. 沥青质引发的蜡油体系结蜡层分层现象及分层规律[J]. 化工学报, 2016, 67(6): 2426-2432. |
Li C X, Cai J Y, Cheng L, et al. Stratification phenomenon and laws of wax deposits of waxy oil triggered by asphaltene addition[J]. CIESC Journal, 2016, 67(6): 2426-2432. | |
3 | 靳文博, 敬加强, 田震, 等. 基于最小二乘支持向量机的蜡沉积速率预测[J]. 化工进展, 2014, 33(10): 2565-2569. |
Jin W B, Jing J Q, Tian Z, et al. Prediction of wax deposition rate based on least squares support vector machine[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2565-2569. | |
4 | 李传宪, 程粱, 杨飞, 等. 聚丙烯酸十八酯降凝剂对合成蜡油结蜡特性影响的研究[J]. 化工学报, 2018, 69(4): 1646-1655. |
Li C X, Cheng L, Yang F, et al. Effect of polyoctadecyl acrylate pour point depressant on characteristics of wax deposits of synthetic waxy oil[J]. CIESC Journal, 2018, 69(4): 1646-1655. | |
5 | 杨飞, 张莹, 李传宪, 等. EVA/纳米蒙脱土复合降凝剂对长庆含蜡原油的作用规律[J]. 化工学报, 2015, 66(11): 4611-4617. |
Yang F, Zhang Y, Li C X, et al. Effects of pour point depressant of EVA/nano MMT compositeson Changqing crude oil[J]. CIESC Journal, 2015, 66(11): 4611-4617. | |
6 | 陈普敏, 韩善鹏, 李鸿英, 等. 采用泰勒分散法测量蜡分子扩散系数[J]. 化工学报, 2014, 65(2): 605-612. |
Chen P M, Han S P, Li H Y, et al. Measurement of diffusion coefficients of paraffin molecules using Taylor dispersion method[J]. CIESC Journal, 2014, 65(2): 605-612. | |
7 | Chen W H, Zhao Z C. Thermodynamic modeling of wax precipitation in crude oils[J]. Chinese Journal of Chemical Engineering, 2006, 14(5): 685-689. |
8 | Coutinho J A P, Daridon J. The limitations of the cloud point measurement techniques and the influence of the oil composition on its detection[J]. Petroleum Science and Technology, 2005, 23(9): 1113-1128. |
9 | 李思, 黄启玉, 范开峰. 石油流体析蜡特性检测技术[J]. 石油学报(石油加工), 2016, 32(6): 1287-1296. |
Li S, Huang Q Y, Fan K F. Review of measurement techniques for wax precipitation characteristics of petroleum fluids[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(6): 1287-1296. | |
10 | Daridon J L, Pauly J, Milhet M. High pressure solid–liquid phase equilibria in synthetic waxes[J]. Physical Chemistry Chemical Physics, 2002, 4(18): 4458-4461. |
11 | Brown T S, Niesen V G, Erickson D D. The effects of light ends and high pressure on paraffin formation[C]//Proceedings of the SPE 1994 Annual Technical Conference and Exhibition. New Orleans: Society of Petroleum Engineers, 1994: 415-429. |
12 | 李鸿英, 冯劼. 基于蜡晶显微图像的定量分析确定原油析蜡点[J]. 油气储运, 2013, 32(1): 23-26. |
Li H Y, Feng J. To determine the wax appearance temperature of crude oil by wax-crystal microscopic image of quantitative analysis[J]. Oil & Gas Storage and Transportation, 2013, 32(1): 23-26. | |
13 | Kané M, Djabourov M, Volle J L, et al. Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow[J]. Fuel, 2003, 82(2): 127-135. |
14 | Haj-Shafiei S, Workman B, Trifkovic M, et al. In-situ monitoring of paraffin wax crystal formation and growth[J]. Crystal Growth & Design, 2019, 19(5): 2830-2837. |
15 | Ronningsen H P, Bjorndal B, Hansen A B, et al. Wax precipitation from North Sea crude oils(1): Crystallization and dissolution temperature, and Newtonian and non-Newtonian flow properties[J]. Energy & Fuels, 1991, 5(6): 895-908. |
16 | Monger-Mcclure T G, Tackett J E, Merrill L S. Comparisons of cloud point measurement and paraffin prediction methods[J]. SPE Production & Facilities, 1999, 14(1): 4-16. |
17 | Cazaux G, Barré L, Brucy F. Waxy crude cold start: assessment through gel structural properties[C]//Proceedings of the SPE 1998 Annual Technical Conference and Exhibition. New Orleans: Society of Petroleum Engineers, 1998: 729-739. |
18 | Paso K, Kallevik H, Sjöblom J. Measurement of wax appearance temperature using near-infrared(NIR) scattering[J]. Energy & Fuels, 2009, 23(10): 4988-4994. |
19 | Zhao Y, Paso K, Norrman J, et al. Utilization of DSC, NIR, and NMR for wax appearance temperature and chemical additive performance characterization[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(2): 1427-1433. |
20 | Kerker M. The Scattering of Light and Other Electromagnetic Radiation[M]. London: Academic Press, 1969: 311-413. |
21 | Alcazar-Vara L A, Buenrostro-Gonzalez E. Characterization of the wax precipitation in Mexican crude oils[J]. Fuel Processing Technology, 2011, 92(12): 2366-2374. |
22 | Snyder R, Maroncelli M, Strauss H L, et al. Temperature and phase behavior of infrared intensities: the poly-(methylene)chain[J]. Journal of Physical Chemistry, 1986, 90(22): 5623-5630. |
23 | Roehner R M, Hanson F V. Determination of wax precipitation temperature and amount of precipitated solid wax versus temperature for crude oils using FT-IR spectroscopy[J]. Energy & Fuels, 2001, 15(3): 756-763. |
24 | Kok M V, Létoffé J M, Claudy Pet al. Comparison of wax appearance temperatures of crude oils by differential scanning calorimetry, thermomicroscopy and viscometry[J]. Fuel, 1996, 75(7): 787-790. |
25 | Hansen A B, Larsen E, W Bet al Pedersen. Wax precipitation from North Sea crude oils(3): Precipitation and dissolution of wax studied by differential scanning calorimetry[J]. Energy & Fuels, 1991, 5(6): 914-923. |
26 | Chen J, Zhang J, Li H. Determining the wax content of crude oils by using differential scanning calorimetry[J]. Thermochimica Acta, 2004, 410(1/2): 23-26. |
27 | Simon S L. Temperature-modulated differential scanning calorimetry: theory and application[J]. Thermochimica Acta, 2001, 374(1): 55-71. |
28 | Wang W, Huang Q, Wang C, et al. Effect of operating conditions on wax deposition in oil pipeline characterized with DSC technique[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 478-485. |
29 | 李光辉, 严美容, 李晓丹. 原油组分对含蜡原油析蜡特征的影响规律[J]. 油气储运, 2020, 39(1): 1-5. |
Li G H, Yan M R, Li X D. Influence of crude oil composition on wax precipitation characteristics of waxy crude oil[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 1-5. | |
30 | 李男, 黄启玉, 赵旗. DSC降温速率对含蜡油样析蜡特性的影响[J]. 油气储运, 2018, 37(3): 281-284. |
Li N, Huang Q Y, Zhao Q. Influence of cooling rate on wax precipitation characteristic of waxy oil samples in DSC test[J].Oil & Gas Storage and Transportation, 2018, 37(3): 281-284. | |
31 | Fan K, Huang Q, Li S. Determination of the optimizing operating procedure for DSC test of wax-solvent samples with narrow and sharp wax peak and error analysis of data reliability[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1713-1725. |
32 | 盛丽媛, 陈朝辉, 郭巍. 重复加热对加剂改性原油蜡晶形态与结构的影响[J]. 油气储运, 2018, 37(9): 1005-1012. |
Sheng L Y, Chen C H, Guo W. Effect of reheating on the morphology and structure of wax crystals in PPD-beneficiated crude oil[J]. Oil & Gas Storage and Transportation, 2018, 37(9): 1005-1012. | |
33 | Kök M V, Varfolomeev M A, Nurgaliev D K. Wax appearance temperature (WAT) determinations of different origin crude oils by differential scanning calorimetry[J]. Journal of Petroleum Science & Engineering, 2018, 168: 542-545. |
34 | Piroozian A, Hemmati H, Ismail I, et al. Effect of emulsified water on the wax appearance temperature of water-in-waxy-crude-oil emulsions[J]. Thermochimica Acta, 2016, 637: 132-142. |
35 | Sun G Y, Li C X, Yang F, et al. Experimental investigation on the gelation process and gel structure of water-in-waxy crude oil emulsion[J]. Energy & Fuels, 2017, 31(1): 201-278. |
36 | Juyal P, Cao T, Yen A, et al. Study of live oil wax precipitation with high-pressure micro-differential scanning calorimetry[J]. Energy & Fuels, 2011, 25(2): 568-572. |
37 | Ijeomah C E, Dandekar A Y, Chukwu G A, et al. Measurement of wax appearance temperature under simulated pipeline (dynamic)conditions[J]. Energy & Fuels, 2008, 22(4): 2437-2442. |
38 | Coutinho J A P, Mirante F, Ribeiro J C, et al. Cloud and pour points in fuel blends[J]. Fuel, 2002, 81(7): 963-967. |
39 | 聂向荣, 杨胜来. 高压含气条件下含蜡原油析蜡点测量方法[J]. 断块油气田, 2016, 23(3): 390-392. |
Nie X R, Yang S L. Measurement method for wax appearance temperature of waxy crude oil under high-pressure and gas-·bearing[J]. Fault-block Oil & Gas Field, 2016, 23(3): 390-392. | |
40 | Mohamed N H, Zaky M T. Separation of microcrystalline waxes from local crude petrolatums using solvent-antisolvent mixtures[J]. Petroleum Science and Technology, 2004, 22(11/12): 1553-1569. |
41 | Han S, Huang Z, Senra M, et al. Method to determine the wax solubility curve in crude oil from centrifugation and high temperature gas chromatography measurements[J]. Energy & Fuels, 2010, 24(3): 1753-1761. |
42 | Martos C, Coto B, Espada J J, et al. Experimental determination and characterization of wax fractions precipitated as a function of temperature[J]. Energy & Fuels, 2008, 22(2): 708-714. |
43 | Roehner R M, Fletcher J M, Hanson F V. Comparative compositional study of crude oil solids from the Trans Alaska Pipeline System using high-temperature gas chromatography[J]. Energy & Fuels, 2002, 16(1): 211-217. |
44 | Coto B, Martos C, Peña J L, et al. A new method for the determination of wax precipitation from non-diluted crude oils by fractional precipitation[J]. Fuel, 2008, 87(10/11): 2090-2094. |
45 | Leontaritis K J, Leontaritis J D. Cloud point and wax deposition measurement techniques[C]//Proceedings of the SPE 2003 International Symposium on Oilfield Chemistry. Houston: Society of Petroleum Engineers, 2003: SPE-80267-MS. |
46 | Foust A S, Wenzel L A, Clump C W, et al. Principles of Unit Operations[M]. 2nd ed. New York: John Wiley Sons, 1980. |
47 | Meray V R, Volle J L, Schranz C J P, et al. Influence of light ends on the onset crystallization temperature of waxy crudes within the frame of multiphase transport[C]//Proceedings of the 1993 SPE Annual Technical Conference and Exhibition. Houston: Society of Petroleum Engineers, 1993: SPE-26549-MS. |
48 | Chen H, Yang S, Nie X, et al. Ultrasonic detection and analysis of wax appearance temperature of kingfisher live oil[J]. Energy & Fuels, 2014, 28(4): 2422-2428. |
49 | 姜彬, 邱凌, 李雪, 等.利用超声波方法确定地层含气原油的析蜡点[J]. 石油勘探与开发, 2014, 41(4): 462-465. |
Jiang B, Qiu L, Li X, et al. Measurement of the WAT of waxy oil under the reservoir condition with ultrasonic method[J]. Petroleum Exploration and Development, 2014, 41(4): 462-465. | |
50 | Tinsley J F. The effects of polymers and asphaltenes upon wax gelation and deposition[D]. Princeton: Princeton University, 2008. |
51 | Kriz P, Andersen S I. Effect of asphaltenes on crude oil wax crystallization[J]. Energy & Fuels, 2005, 19(3): 948-953. |
52 | Alcazar-Vara L A, Buenrostro-Gonzalez E. Experimental study of the influence of solvent and asphaltenes on liquid-solid phase behavior of paraffinic model systems by using DSC and FT-IR techniques[J]. Journal of Thermal Analysis and Calorimetry, 2012, 107(3): 1321-1329. |
53 | Alcazar-Vara L A, Garcia-Martinez J A, Buenrostro-Gonzalez E. Effect of asphaltenes on equilibrium and rheological properties of waxy model systems[J]. Fuel, 2012, 93(1): 200-212. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[3] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[4] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[5] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[6] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[7] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[8] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[9] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[10] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[11] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[12] | Yongqian WANG, Ping WANG, Kang CHENG, Chenlin MAO, Wenfeng LIU, Zhicheng YIN, Antonio Ferrante. Stability and NO production of lean premixed ammonia/methane turbulent swirling flame [J]. CIESC Journal, 2022, 73(9): 4087-4094. |
[13] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[14] |
Guoxin SUN, Mengxuan GOU, Cheng ZHOU, Pei CHANG, Gaohong HE, Xiaobin JIANG.
Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO |
[15] | Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||