CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3322-3332.DOI: 10.11949/0438-1157.20191259
• Energy and environmental engineering • Previous Articles Next Articles
Yufeng XU1,2(),Ming GUO1,Rang WANG3,Wei XIAO4,Yuanhui LIU1,Simin LI1()
Received:
2019-10-23
Revised:
2020-03-03
Online:
2020-07-05
Published:
2020-07-05
Contact:
Simin LI
徐宇峰1,2(),郭鸣1,王让3,肖伟4,刘元慧1,李思敏1()
通讯作者:
李思敏
作者简介:
徐宇峰(1984—),男,博士,副教授,基金资助:
CLC Number:
Yufeng XU, Ming GUO, Rang WANG, Wei XIAO, Yuanhui LIU, Simin LI. Analysis on removal effect of micro-contamination of PhACs by composite modified bio-sand filter[J]. CIESC Journal, 2020, 71(7): 3322-3332.
徐宇峰, 郭鸣, 王让, 肖伟, 刘元慧, 李思敏. 复合改性生物砂滤池对突发PhACs痕量污染的去除效果分析[J]. 化工学报, 2020, 71(7): 3322-3332.
Add to citation manager EndNote|Ris|BibTeX
项目 | pH | 温度/℃ | 浊度/NTU | NH3-N/(mg/L) | TN/ (mg/L) | TP/ (mg/L) | CODCr/(mg/L) |
---|---|---|---|---|---|---|---|
Min | 7.18 | 19.50 | 2.19 | 1.09 | 15.68 | 0.96 | 25.40 |
Max | 7.78 | 21.80 | 3.63 | 3.90 | 20.01 | 1.21 | 30.51 |
Ave | 7.48 | 20.65 | 2.91 | 2.50 | 17.85 | 1.09 | 27.95 |
Table 1 Quality of effluent
项目 | pH | 温度/℃ | 浊度/NTU | NH3-N/(mg/L) | TN/ (mg/L) | TP/ (mg/L) | CODCr/(mg/L) |
---|---|---|---|---|---|---|---|
Min | 7.18 | 19.50 | 2.19 | 1.09 | 15.68 | 0.96 | 25.40 |
Max | 7.78 | 21.80 | 3.63 | 3.90 | 20.01 | 1.21 | 30.51 |
Ave | 7.48 | 20.65 | 2.91 | 2.50 | 17.85 | 1.09 | 27.95 |
药物门类 | 英文名称 | 药物名称 | 药物门类 | 英文名称 | 药物名称 |
---|---|---|---|---|---|
大环内酯类抗生素(macrolide antibiotics) | Azithromycin (AZM) | 阿奇霉素 | 喹诺酮类抗生素(quinolones) | Ofloxacin (OFX) | 氧氟沙星 |
Romycin-H2O (ERY-H2O) | 红霉素 | Norfloxacin (NOR) | 诺氟沙星 | ||
RTMithromycin (RTM) | 罗红霉素 | Enoxacin (ENO) | 依诺沙星 | ||
止痛剂类药(analgesic) | Ibuprofen (IBU) | 布洛芬 | 降高血压类药(antihypersensitive) | Metoprolol (MTP) | 美托洛尔 |
Diclofenac (DCF) | 双氯芬 酸钠 | Amlodipine (ALP) | 阿莫洛地平 | ||
Acetaminophen (APAP) | 对乙酰氨基酚 | 四环素类抗生素(tetracyclines) | Tetracycline (TCN) | 四环素 |
Table 2 Target PhACs
药物门类 | 英文名称 | 药物名称 | 药物门类 | 英文名称 | 药物名称 |
---|---|---|---|---|---|
大环内酯类抗生素(macrolide antibiotics) | Azithromycin (AZM) | 阿奇霉素 | 喹诺酮类抗生素(quinolones) | Ofloxacin (OFX) | 氧氟沙星 |
Romycin-H2O (ERY-H2O) | 红霉素 | Norfloxacin (NOR) | 诺氟沙星 | ||
RTMithromycin (RTM) | 罗红霉素 | Enoxacin (ENO) | 依诺沙星 | ||
止痛剂类药(analgesic) | Ibuprofen (IBU) | 布洛芬 | 降高血压类药(antihypersensitive) | Metoprolol (MTP) | 美托洛尔 |
Diclofenac (DCF) | 双氯芬 酸钠 | Amlodipine (ALP) | 阿莫洛地平 | ||
Acetaminophen (APAP) | 对乙酰氨基酚 | 四环素类抗生素(tetracyclines) | Tetracycline (TCN) | 四环素 |
药品 | PNEC | 进水 | OQ-BSF 出水RQ | SM-BSF 出水RQ | IM-BSF 出水RQ | OM-BSF 出水RQ | CM-BSF 出水RQ | AM-BSF 出水RQ |
---|---|---|---|---|---|---|---|---|
AZM | 1.97 | 0.37 | 0.28 | 0.24 | 0.25 | 0.18 | 0.2 | 0.23 |
ERY-H2O | 0.02 | 30.75 | 21.55 | 17.6 | 21.8 | 15.95 | 17.05 | 18.8 |
RTM | 4 | 0.19 | 0.15 | 0.14 | 0.14 | 0.12 | 0.11 | 0.11 |
OFX | 0.02 | 91.13 | 63.31 | 46 | 61.38 | 44.56 | 40.56 | 51.63 |
NOR | 2 | 0.44 | 0.4 | 0.38 | 0.41 | 0.35 | 0.36 | 0.39 |
ENO | 0.03 | 25.49 | 18.4 | 16.81 | 17.22 | 15.49 | 14.72 | 15.83 |
IBU | 1 | 0.92 | 0.69 | 0.56 | 0.67 | 0.62 | 0.57 | 0.6 |
DCF | 1 | 0.9 | 0.75 | 0.6 | 0.72 | 0.47 | 0.66 | 0.7 |
APAP | 9.2 | 0.15 | 0.11 | 0.09 | 0.08 | 0.11 | 0.09 | 0.09 |
MTP | 7.9 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
ALP | 126.87 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
TCN | 0.09 | 12.42 | 2.93 | 2.8 | 2.9 | 2.58 | 2.58 | 2.8 |
RQt | 162.81 | 108.62 | 85.26 | 105.6 | 80.45 | 76.92 | 91.23 |
Table 3 Risk entropy of target PhACs in influent and effluent
药品 | PNEC | 进水 | OQ-BSF 出水RQ | SM-BSF 出水RQ | IM-BSF 出水RQ | OM-BSF 出水RQ | CM-BSF 出水RQ | AM-BSF 出水RQ |
---|---|---|---|---|---|---|---|---|
AZM | 1.97 | 0.37 | 0.28 | 0.24 | 0.25 | 0.18 | 0.2 | 0.23 |
ERY-H2O | 0.02 | 30.75 | 21.55 | 17.6 | 21.8 | 15.95 | 17.05 | 18.8 |
RTM | 4 | 0.19 | 0.15 | 0.14 | 0.14 | 0.12 | 0.11 | 0.11 |
OFX | 0.02 | 91.13 | 63.31 | 46 | 61.38 | 44.56 | 40.56 | 51.63 |
NOR | 2 | 0.44 | 0.4 | 0.38 | 0.41 | 0.35 | 0.36 | 0.39 |
ENO | 0.03 | 25.49 | 18.4 | 16.81 | 17.22 | 15.49 | 14.72 | 15.83 |
IBU | 1 | 0.92 | 0.69 | 0.56 | 0.67 | 0.62 | 0.57 | 0.6 |
DCF | 1 | 0.9 | 0.75 | 0.6 | 0.72 | 0.47 | 0.66 | 0.7 |
APAP | 9.2 | 0.15 | 0.11 | 0.09 | 0.08 | 0.11 | 0.09 | 0.09 |
MTP | 7.9 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
ALP | 126.87 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
TCN | 0.09 | 12.42 | 2.93 | 2.8 | 2.9 | 2.58 | 2.58 | 2.8 |
RQt | 162.81 | 108.62 | 85.26 | 105.6 | 80.45 | 76.92 | 91.23 |
1 | Ciesielczyk F, Goscianska J, Zdarta J, et al. The development of zirconia/silica hybrids for the adsorption and controlled release of active pharmaceutical ingredients[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 545: 39-50. |
2 | Wang Y, Yang Q, Dong J. Competitive adsorption of PPCP and humic substances by carbon nanotube membranes. Effects of coagulation and PPCP properties[J]. Science of the Total Environment, 2017, 619/620: 352-359. |
3 | Li B, Zhang T, Xua Z Y, et al. Rapid analysis of 21 antibiotics of multiple classes in municipal waste water using ultra performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2009, 645: 64-72. |
4 | Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The occurrence of pharmaceuticals, personal care produces, endocine disruptors and illicit drugs in surface water in South Wales, UK[J]. Water Research, 2008, 42: 3498-3518. |
5 | 李思敏. 污水厂二级出水深度处理O3+MBSF工艺及微生物群落结构特性研究[D]. 太原: 太原理工大学, 2016. |
Li S M. Study on O3 + MBSF process and microbial community structure characteristics of secondary treatment of secondary effluent from wastewater treatment plant [D]. Taiyuan: Taiyuan University of Technology, 2016. | |
6 | 尹然. 改性生物砂滤工艺对城市污水厂尾水中典型PhACs的去除机理研究[D]. 邯郸: 河北工程大学, 2017. |
Yin R. Removal mechanism of typical PhACs in tail water of municipal wastewater treatment plant by modified biological sand filtration process [D]. Handan: Hebei University of Engineering, 2017. | |
7 | 张佳. 微氟玻璃蚀刻技术的开发及应用[D]. 西安: 陕西科技大学, 2014. |
Zhang J. Development and application of microfluorine glass etching technology [D]. Xi an: Shaanxi University of Science and Technology, 2014. | |
8 | 刘存海, 张佳. 微氟循环玻璃蚀刻的工艺研究[J]. 陕西师范大学学报(自然科学版). 2014, (1): 62-64. |
Liu C H, Zhang J. Study on micro fluorine recycling etched glass[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2014, (1): 62-64. | |
9 | Abromaitis V, Racys V, van der Marel P, et al. Biodegradation of persistent organics can overcome adsorption-desorption hysteresis in biological activated carbon systems[J]. Chemosphere, 2016, 149: 183-189. |
10 | 李思敏, 高沛, 吕永康. 改性石英砂生物滤池深度处理污水厂二级出水[J]. 中国给水排水, 2015, 31(9): 104-108. |
Li S M, Gao P, Lyu Y K. Modified bio-sand filters for advanced treatment of secondary effluent of WWTP[J]. China Water & Wastewater, 2015, 31(9): 104-108. | |
11 | 翟小敏, 高旭, 张曼曼, 等. A+OSA污泥减量工艺碳元素平衡与减量机制研究[J]. 环境科学, 2012, 33(7): 2444-2450. |
Zhai X M, Gao X, Zhang M M, et al. Analysis of carbon balance and study on mechanism in anoxic-oxic-settling-anaerobic sludge reduction process[J]. Chinese Journal of Environmental Science, 2012, 33(7): 2444-2450. | |
12 | 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法 [M]. 4版. 北京: 中国环境出版社, 2002. |
Editorial Board of the State Environmental Protection Administration “Analysis Method of Water and Wastewater Monitoring”. Analysis Method of Water and Wastewater Monitoring [M]. 4th ed. Beijing: China Environment Press, 2002. | |
13 | Hernando M D, Agüera A, Fernández-Alba A R. LC-MS analysis and environmental risk of lipid regulators[J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1269-1285. |
14 | Zhang P, Qu Y, Feng Y, et al. The influence of the filtration membrane air-cathode biofilm on wastewater treatment[J]. Bioresource Technology, 2018, 256: 17-21. |
15 | 徐宇峰, 郭鸣, 王龙, 等. CODCr测量方法优化及其受营养盐胁迫研究[J]. 分析试验室, 2020, (3): 272-277. |
Xu Y F, Guo M, Wang L, et al. Optimization of CODCr measurement method and its nutritional stress [J]. Chinese Journal of Analysis Laboratory, 2020, (3): 272-277. | |
16 | 赵伟荣. 阳离子红X-GRL染料的UV、O3、O3/UV氧化处理研究[D]. 杭州: 浙江大学, 2004. |
Zhao W R. UV, O3, O3 / UV oxidation treatment of cationic red X-GRL dye [D]. Hangzhou: Zhejiang University, 2004. | |
17 | 王程, 马定莹, 陈忆东, 等. 氨基功能化沸石的制备及其吸附性研究[J]. 应用基础与工程科学学报, 2017, 25(6): 1077-1085. |
Wang C, Ma D Y, Chen Y D, et al. Preparation and adsorption property of amino functionalized zeolite[J]. Journal of Basic Science and Engineering, 2017, 25(6): 1077-1085. | |
18 | Wu J, He J D, Bi D S, et al. A bio-cake model for the soluble COD removal by the back-transport, adsorption and biodegradation processes in the submerged membrane bioreactor[J]. Desalination, 2013, 322(322): 1-12. |
19 | Berkessa Y W, Yan B H, Li T F, et al. Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration[J]. Bioresource Technology, 2018, 250: 281-289. |
20 | 李思敏, 吕永康, 杨晶, 等. O3+MBSF组合工艺深度处理污水厂二级出水[J]. 中国给水排水, 2016, 32(11): 95-99. |
Li S M, Lyu Y K, Yang J, et al. O3/modified bio-sand filter for advanced treatment of secondary effluent from WWTP[J]. China Water & Wastewater, 2016, 32(11): 95-99. | |
21 | 陈佼. 人工快渗系统PN-ANAMMOX耦合脱氮性能及机理研究[D]. 成都: 西南交通大学, 2018. |
Chen J. Study on PN-ANAMMOX coupled denitrification performance and mechanism of artificial rapid infiltration system [D]. Chengdu: Southwest Jiaotong University, 2018. | |
22 | 刘元慧. 复合改性生物砂滤工艺对典型PhACs的削减机理研究——以四环素为例[D]. 邯郸: 河北工程大学, 2019. |
Liu Y H. Research on reduction mechanism of typical PhACs by composite modified biological sand filtration process—taking tetracycline as an example [D]. Handan: Hebei Engineering University, 2019. | |
23 | 施翔, 张旺, 龚向东, 等. 阿奇霉素-聚环糊精超分子包合物的制备及表征[J]. 扬州大学学报(自然科学版), 2014, 17(3): 29-31+40. |
Shi X, Zhang W, Gong X D, et al. Preparation and characterization of inclusion complex of Azithromycin with β-cyclodextrin polymer[J]. Journal of Yangzhou University(Natural Science Edition), 2014, 17(3): 29-31+40. | |
24 | Davoodi S, Dahrazma B, Goudarzi N, et al. Adsorptive removal of azithromycin from aqueous solutions using raw and saponin-modified nano diatomite[J]. Water Science and Technology, 2019, 80(5): 939-949. |
25 | Han Y, Quan X, Chen S, et al. Electrochemically enhanced adsorption of aniline on activated carbon fibers[J]. Separation and Purification Technology, 2006, 50(3): 365-372. |
26 | 唐胜华. 14C-红霉素在植物-土壤/水系统中的迁移转化和归趋[D]. 杭州: 浙江大学, 2017. |
Tang S H. Transfer and fate of 14C-erythromycin in plant-soil / water system [D]. Hangzhou: Zhejiang University, 2017. | |
27 | 于慧娟, 蔡友琼, 顾润润. 高效液相色谱法测定红霉素, 甲红霉素和罗红霉素的研究[J]. 分析试验室, 2006, 25(6): 63-66. |
Yu H J, Cai Y Q, Gu R R. Analysis of erythromycin, clarithromycin and roxithromycin by high performance liquid chromatography with fluorometric detection[J]. Chinese Journal of Analysis Laboratory, 2006, 25(6): 63-66. | |
28 | Tai Y, Tam N F Y, Wang R, et al. Iron plaque formation on wetland-plant roots accelerates removal of water-borne antibiotics[J]. Plant and Soil, 2018, 433(1/2): 323-338. |
29 | Soulé M E Z, Barraqué F, Flores F M, et al. Carbon/montmorillonite hybrids with different activation methods: adsorption of norfloxacin[J]. Adsorption, 2019, 25(7): 1361-1373. |
30 | Pei Z, Kong J, Shan X, et al. Sorption of aromatic hydrocarbons onto montmorillonite as affected by norfloxacin[J]. Journal of Hazardous Materials, 2012, 203: 137-144. |
31 | Martinez-Alcala I, Guillén-Navarro J M, Fernandez-Lopez C. Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia, Spain[J]. Chemical Engineering Journal, 2017, 316: 332-340. |
32 | Sturini M, Speltini A, Maraschi F, et al. Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight[J]. Applied Catalysis B: Environmental, 2012, 119: 32-39. |
33 | Xie H J, Liu W F, Zhang J, et al. Sorption of norfloxacin from aqueous solutions by activated carbon developed from Trapa natans husk[J]. Science China Chemistry, 2011, 54(5): 835-843. |
34 | Wang C, Ma L, Liu B, et al. Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid[J]. Environmental Science and Pollution Research, 2017, 24(30): 23834-23842. |
35 | 易琼, 祁智, 蔡莉, 等. 反相高效液相色谱法测定依诺沙星原料含量与有关物质[J]. 医药导报, 2007, 26(11): 1354-1355. |
Yi Q, Qi Z, Cai L, et al. Determination of the content and related substances of enoxacin by reversed-phase high performance liquid chromatography [J]. Medical Herald, 2007, 26 (11): 1354-1355. | |
36 | de Oliveira T, Guégan R, Thiebault T, et al. Adsorption of diclofenac onto organoclays: effects of surfactant and environmental (pH and temperature) conditions[J]. Journal of Hazardous Materials, 2017, 323: 558-566. |
37 | Xu H, Wang W, Shi Y, et al. Characterization of the partition rate of ibuprofen across the water-octanol interface and the influence of common pharmaceutical excipients[J]. Journal of Pharmaceutical Sciences, 2019, 108(1): 525-537. |
38 | Martín J, del Mar Orta M, Medina-Carrasco S, et al. Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media[J]. Applied Clay Science, 2019, 171: 29-37. |
39 | Villaescusa I, Fiol N, Poch J, et al. Mechanism of paracetamol removal by vegetable wastes: the contribution of π-π interactions, hydrogen bonding and hydrophobic effect[J]. Desalination, 2011, 270(1/2/3): 135-142. |
40 | Liu H, Ning W, Cheng P, et al. Evaluation of animal hairs-based activated carbon for sorption of norfloxacin and acetaminophen by comparing with cattail fiber-based activated carbon[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 156-165. |
41 | Lladó J, Lao-Luque C, Ruiz B, et al. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics[J]. Process Safety and Environmental Protection, 2015, 95: 51-59. |
42 | Ali I, Asim M, Khan T A. Low cost adsorbents for the removal of organic pollutants from wastewater[J]. Journal of Environmental Management, 2012, 113: 170-183. |
43 | Quesada H B, Cusioli L F, de Oliveira B C, et al. Acetaminophen adsorption using a low-cost adsorbent prepared from modified residues of Moringa oleifera Lam. seed husks[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(10): 3147-3157. |
44 | Maurer M, Escher B I, Richle P, et al. Elimination of β-blockers in sewage treatment plants[J]. Water Research, 2007, 41(7): 1614-1622. |
45 | Kibbey T C G, Paruchuri R, Sabatini D A, et al. Adsorption of beta blockers to environmental surfaces[J]. Environmental Science & Technology, 2007, 41(15): 5349-5356. |
46 | 单振华, 严静娜, 杨腾飞, 等. 美托洛尔在沉积物与活性污泥上的吸附行为[J]. 环境化学, 2016, 35(12): 2559-2567. |
Shan Z H, Yan J N, Yang T F, et al. Adsorption behaviors of Metoprolol onto sediments and activated sludge [J]. Environmental Chemistry, 2016, 35(12): 2559-2567. | |
47 | Amiri M, Imanzade H. Adsorption of amlodipine at the surface of tosyl-carbon nanoparticles for electrochemical sensing[J]. Iranian Journal of Pharmaceutical Research: IJPR, 2016, 15(3): 303-311. |
48 | Chen Y, Wang F, Duan L, et al. Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies[J]. Journal of Molecular Liquids, 2016, 222: 487-494. |
49 | Yu J, Xiong W, Li X, et al. Functionalized MIL-53 (Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution[J]. Microporous and Mesoporous Materials, 2019, 290: 109642. |
50 | Wang Z, Tang H, Li W, et al. Core–shell TiO2@ C ultralong nanotubes with enhanced adsorption of antibiotics[J]. Journal of Materials Chemistry A, 2019, 7(32): 19081-19086. |
51 | 张杏艳, 陈中华, 邓海明, 等. 水环境中四环素类抗生素降解及去除研究进展[J]. 生态毒理学报, 2016, 11(6): 44-52. |
Zhang X Y, Chen Z H, Deng H M, et al. A review on degradation and elimination of tetracycline antibiotics in water environment [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 44-52. | |
52 | Mccormick J R D, Fox S M, Smith L L, et al. On the nature of the reversible isomerizations occurring in the tetracycline family[J]. Journal of the American Chemical Society, 1956, 78(14): 3547-3548. |
53 | 刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3): 89-94. |
Liu W, Wang H, Chen X J, et al. Progress on degradation of antibiotics in environment [J]. Progress in Veterinary Medicine, 2009, 30 (3): 89-94. | |
54 | 刘元望, 李兆君, 冯瑶, 等. 微生物降解抗生素的研究进展[J]. 农业环境科学学报, 2016, (2): 212-224. |
Liu Y W, Li Z J, Feng Y, et al. Research progress in microbial degradation of antibiotics [J]. Journal of Agro-Environment Science, 2016, (2): 212-224. | |
55 | Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: a conceptual framework [J]. Environmental Science and Technology, 2012, 46(5): 2564-2573. |
[1] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[2] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[3] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[4] | Qingchao LIU, Hui JIA, Yifei XU, Na LU, Yanmei YIN, Jie WANG. Study on shear-force distribution in biological aerated filter based on FBG sensing technology [J]. CIESC Journal, 2023, 74(4): 1755-1763. |
[5] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[6] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[7] | GAO Zixi, GUO Shuqi, FEI Qiang. Recent progress in microbial bioconversion of greenhouse gases into single cell protein [J]. CIESC Journal, 2021, 72(6): 3202-3214. |
[8] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[9] | Xiaojing ZHANG,Bingbing MA,Han ZHANG,Denghui WEI,Hongli ZHANG,Hao HU,Zirui ZHAO. Comparison of the performance of Anammox process in the treatment of wastewater from different antibiotics [J]. CIESC Journal, 2021, 72(11): 5810-5819. |
[10] | Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches [J]. CIESC Journal, 2020, 71(9): 3950-3962. |
[11] | Zongyue LIU, Hong YANG, Shaolun WANG, Jiawei WANG. Rapid industrial enrichment of nitrifying bacteria [J]. CIESC Journal, 2020, 71(8): 3722-3729. |
[12] | Zhifeng HU,Shihai DENG,Chao ZHANG,Desheng LI,Shuai PENG. Advanced nitrogen removal of autotrophic denitrification by integrated iron substrate biofilm reactor [J]. CIESC Journal, 2020, 71(7): 3304-3312. |
[13] | Xun SONG, Qian FU, Jun LI, Liang ZHANG, Qiang LIAO, Xun ZHU. Numerical simulation of transport characteristics in biocathodes catalyzing carbon dioxide to methane [J]. CIESC Journal, 2020, 71(5): 2273-2282. |
[14] | Han WU, Ying CHEN, Min LIU, Shuying WANG, Wei ZHANG. Domestication and identification of cold-resistant bacteria in SBBR reactor [J]. CIESC Journal, 2020, 71(2): 766-776. |
[15] | Guang YANG,Moran WANG. Numerical simulation and performance analysis of flow field in coaxial contra-rotating bioreactor [J]. CIESC Journal, 2020, 71(11): 5188-5199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||