CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1047-1058.DOI: 10.11949/0438-1157.20200559
• Process system engineering • Previous Articles Next Articles
PENG Xiaoyi(),DONG Xuan,LIAO Zuwei(),YANG Yao,SUN Jingyuan,JIANG Binbo,WANG Jingdai,YANG Yongrong
Received:
2020-05-10
Revised:
2020-06-11
Online:
2021-02-05
Published:
2021-02-05
Contact:
LIAO Zuwei
彭肖祎(),董轩,廖祖维(),杨遥,孙婧元,蒋斌波,王靖岱,阳永荣
通讯作者:
廖祖维
作者简介:
彭肖祎(1994—),女,硕士研究生,基金资助:
CLC Number:
PENG Xiaoyi, DONG Xuan, LIAO Zuwei, YANG Yao, SUN Jingyuan, JIANG Binbo, WANG Jingdai, YANG Yongrong. Optimal design of heat integrated water allocation networks combining mathematical programming with graphical tools[J]. CIESC Journal, 2021, 72(2): 1047-1058.
彭肖祎, 董轩, 廖祖维, 杨遥, 孙婧元, 蒋斌波, 王靖岱, 阳永荣. 数学规划与图形方法相结合设计热集成用水网络[J]. 化工学报, 2021, 72(2): 1047-1058.
Add to citation manager EndNote|Ris|BibTeX
用水单元 | 最大入口 浓度/ppm | 最大出口 浓度/ppm | 操作温度/℃ | 极限流率/ (kg/s) | 移除杂质 负荷/(g/s) |
---|---|---|---|---|---|
1 | 0 | 100 | 40 | 20 | 2 |
2 | 50 | 100 | 100 | 100 | 5 |
3 | 50 | 800 | 75 | 40 | 30 |
4 | 400 | 800 | 50 | 10 | 4 |
Table 1 Water-using operation data
用水单元 | 最大入口 浓度/ppm | 最大出口 浓度/ppm | 操作温度/℃ | 极限流率/ (kg/s) | 移除杂质 负荷/(g/s) |
---|---|---|---|---|---|
1 | 0 | 100 | 40 | 20 | 2 |
2 | 50 | 100 | 100 | 100 | 5 |
3 | 50 | 800 | 75 | 40 | 30 |
4 | 400 | 800 | 50 | 10 | 4 |
图 | 换热量/kW | 换热面积/m2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | H | 换热量总和 | S1 | S2 | S3 | SH | 换热面积总和 | |
3569.9 | 7097.8 | 7560 | 3780 | 22007.7 | 524.6 | 1419.6 | 1512 | 269.6 | 3725.8 | |
3570 | 630.4 | 14027.4 | 3780 | 22007.7 | 524.6 | 120.7 | 3221.1 | 269.6 | 4136 |
Table 2 Design comparison of Fig.6(e) and Fig.6(f)
图 | 换热量/kW | 换热面积/m2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | H | 换热量总和 | S1 | S2 | S3 | SH | 换热面积总和 | |
3569.9 | 7097.8 | 7560 | 3780 | 22007.7 | 524.6 | 1419.6 | 1512 | 269.6 | 3725.8 | |
3570 | 630.4 | 14027.4 | 3780 | 22007.7 | 524.6 | 120.7 | 3221.1 | 269.6 | 4136 |
文献 | 新鲜水用量/( kg/s) | 换热器个数 | 公用工程用量/ kW | 换热量/kW | 总换热面积/ m2 |
---|---|---|---|---|---|
[ | 90 | 4 | 3780 | 22008.0 | 3915.2 |
[ | 90 | 4 | 3780 | 22260.0 | 3775.4 |
本文[ | 90 | 4 | 3780 | 22007.7 | 3725.8 |
Table 3 Overall design comparison
文献 | 新鲜水用量/( kg/s) | 换热器个数 | 公用工程用量/ kW | 换热量/kW | 总换热面积/ m2 |
---|---|---|---|---|---|
[ | 90 | 4 | 3780 | 22008.0 | 3915.2 |
[ | 90 | 4 | 3780 | 22260.0 | 3775.4 |
本文[ | 90 | 4 | 3780 | 22007.7 | 3725.8 |
换热匹配个数 | 换热单元个数 | 总换热面积/m2 | 总换热量/kW |
---|---|---|---|
1 | 2 | 6024.6 | 22007.7 |
2 | 3 | 4420.0 | 22007.7 |
3 | 4 | 3725.8 | 22007.7 |
4 | 5 | 3596.3 | 22007.7 |
Table 4 Comparison of four design results
换热匹配个数 | 换热单元个数 | 总换热面积/m2 | 总换热量/kW |
---|---|---|---|
1 | 2 | 6024.6 | 22007.7 |
2 | 3 | 4420.0 | 22007.7 |
3 | 4 | 3725.8 | 22007.7 |
4 | 5 | 3596.3 | 22007.7 |
1 | Zhou L, Liao Z, Wang J, et al. Simultaneous optimization of heat-integrated water allocation networks using the mathematical model with equilibrium constraints strategy[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3355-3366. |
2 | 郭孝正, 刘琳琳, 张磊, 等. 基于截断器半连续操作的间歇过程性质集成[J]. 化工学报, 2019, 70(2): 516-524. |
Guo X Z, Liu L L, Zhang L, et al. Property integration of batch process based on interceptors in semi-continuous operation[J]. CIESC Journal, 2019, 70(2): 516-524. | |
3 | Ahmetović E, Ibrić N, Kravanja Z, et al. Water and energy integration: a comprehensive literature review of non-isothermal water network synthesis[J]. Computers & Chemical Engineering, 2015, 82(2): 144-171. |
4 | Onishi V C, Quirante N, Ravagnani M A S S, et al. Optimal synthesis of work and heat exchangers networks considering unclassified process streams at sub and above-ambient conditions[J]. Applied Energy, 2018, 224: 567-581. |
5 | 阮真真, 孙力, 李保红. 单杂质用水网络集成对能量集成影响规律探索[J]. 化工进展, 2011, 30(S2): 182-185. |
Ruan Z Z, Sun L, Li B H. Study on the effect of water-using network on energy intergration with a single contaminant[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 182-185. | |
6 | Bagajewicz M, Savelski M. On the use of linear models for the design of water utilization systems in process plants with a single contaminant[J]. Chemical Engineering Research and Design, 2001, 79(5): 600-610. |
7 | Prakash R, Shenoy U V. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations[J]. Chemical Engineering Science, 2005, 60(1): 255-268. |
8 | Chen C, Liao H, Jia X, et al. Synthesis of heat-integrated water-using networks in process plants[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(4): 512-521. |
9 | Kamat S, Bandyopadhyay S. Synthesis of heat-integrated water allocation networks through pinch analysis[J]. Process Integration and Optimization for Sustainability, 2019, 3(4): 515-531. |
10 | Chang C T, Li B H. Improved optimization strategies for generating practical water-usage and -treatment network structures [J]. Industrial & Engineering Chemistry Research, 2005, 44(10): 3607-3618. |
11 | Bagajewicz M. A review of recent design procedures for water networks in refineries and process plants[J]. Computers & Chemical Engineering, 2000, 24(9/10): 2093-2113. |
12 | Bagajewicz M, Rodera H, Savelski M. Energy efficient water utilization systems in process plants[J]. Computers & Chemical Engineering, 2002, 26(1): 59-79. |
13 | Wang Y P, Smith R. Wastewater minimisation[J]. Chemical Engineering Science, 1994, 49(7): 981-1006. |
14 | Olesen S G, Polley G T. A simple methodology for the design of water networks handling single contaminants[J]. Chemical Engineering Research and Design, 1997, 75(4): 420-426. |
15 | 罗祎青, 刘乔乔, 袁希钢. 混合顺序对热集成水网络的能耗影响[J]. 化工学报, 2013, 64: 140-146. |
Luo Y Q, Liu Q Q, Yuan X G. Effect of mixing sequence on heat-integrated water network's energy performance[J]. CIESC Journal, 2013, 64: 140-146. | |
16 | Luo Y, Liu Z, Luo S, et al. Thermodynamic analysis of non-isothermal mixing's influence on the energy target of water-using networks[J]. Computers & Chemical Engineering, 2014, 61: 1-8. |
17 | Du J, Meng X, Du H, et al. Optimal design of water utilization network with energy integration in process industries[J]. Chinese Journal of Chemical Engineering, 2004, 12(2): 247-255. |
18 | 都健, 李秀峰, 陈理, 等. 超结构法分步综合热集成的质量交换网络[J]. 化工学报, 2010, 61(10): 2636-2643. |
Du J, Li X F, Chen L, et al. Synthesis of heat integrated mass exchanger networks using step-wise approach based on superstructure[J]. CIESC Journal, 2010, 61(10): 2636-2643. | |
19 | 廖祖维, 阳永荣, 王靖岱, 等. 考虑热集成的用水网络优化[J]. 化工学报, 2007, 58(2): 396-402. |
Liao Z W, Yang Y R, Wang J D, et al. Optimization of energy efficient water utilization systems[J]. CIESC Journal, 2007, 58(2): 396-402. | |
20 | Liao Z, Wu J, Jiang B, et al. Design energy efficient water utilization systems allowing operation split[J]. Chinese Journal of Chemical Engineering, 2008, 16(1): 16-20. |
21 | Zhou R, Li L, Dong H, et al. Synthesis of interplant water-allocation and heat-exchange networks. Part 1: Fixed flow rate processes[J]. Industrial and Engineering Chemistry Research, 2012, 51(11): 4299-4312. |
22 | Liao Z, Rong G, Wang J, et al. Systematic optimization of heat-integrated water allocation networks[J]. Industrial and Engineering Chemistry Research, 2011, 50(11): 6713-6727. |
23 | Yan F, Wu H, Li W, et al. Simultaneous optimization of heat-integrated water networks by a nonlinear program[J]. Chemical Engineering Science, 2016, 140: 76-89. |
24 | Ahmetović E, Kravanja Z. Simultaneous synthesis of process water and heat exchanger networks[J]. Energy, 2013, 57: 236-250. |
25 | 刘祖明, 罗祎青, 袁希钢. 考虑非等温混合的能量集成用水网络综合[J]. 化工学报, 2014, 65(1): 285-291. |
Liu Z M, Luo Y Q, Yuan X G. Synthesis of heat-integrated water allocation network considering non-isothermal mixing[J]. CIESC Journal, 2014, 65(1): 285-291. | |
26 | Hong X, Liao Z, Jiang B, et al. New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science, 2017, 173: 537-559. |
27 | Hong X, Liao Z, Sun J, et al. Energy and water management for industrial large-scale water networks: a systematic simultaneous optimization approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2269-2282. |
28 | Lee J Y, Chen C L, Lin C Y, et al. A two-stage approach for the synthesis of inter-plant water networks involving continuous and batch units[J]. Chemical Engineering Research and Design, 2014, 92(5): 941-953. |
29 | Rubio-Castro E, Ponce-Ortega J M J M P Y C, Serna-González M, et al. Optimal reconfiguration of multi-plant water networks into an eco-industrial park[J]. Computers & Chemical Engineering, 2012, 44: 58-83. |
30 | Liu L, Song H, Zhang L, et al. Heat-integrated water allocation network synthesis for industrial parks with sequential and simultaneous design[J]. Computers & Chemical Engineering, 2018, 108: 408-424. |
31 | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
32 | Varbanov P, Perry S, Klemeš J, et al. Synthesis of industrial utility systems: cost-effective de-carbonisation[J]. Applied Thermal Engineering, 2005, 25(7): 985-1001. |
33 | Savulescu L. Simultaneous energy and water minimisation[D]. Manchester: University of Manchester, 1999. |
34 | Savulescu L, Kim J K, Smith R. Studies on simultaneous energy and water minimisation—Part II: Systems with maximum re-use of water[J]. Chemical Engineering Science, 2005, 60(12): 3291-3308. |
35 | Leewongtanawit B, Kim J K. Improving energy recovery for water minimisation[J]. Energy, 2009, 34(7): 880-893. |
36 | Savulescu L, Sorin M, Smith R. Direct and indirect heat transfer in water network systems[J]. Applied Thermal Engineering, 2002, 22(8): 981-988. |
37 | wan Alwi S R Ismail A, Manan Z A, et al. A new graphical approach for simultaneous mass and energy minimisation[J]. Applied Thermal Engineering, 2011, 31(6/7): 1021-1030. |
38 | Martínez-Patiño J, Picón-Núñez M, Serra L M, et al. Design of water and energy networks using temperature-concentration diagrams[J]. Energy, 2011, 36(6): 3888-3896. |
39 | Manan Z A, Tea S Y, Alwi S R W. A new technique for simultaneous water and energy minimisation in process plant[J]. Chemical Engineering Research and Design, 2009, 87(11): 1509-1519. |
40 | Feng X, Yucai L I, Xinjiang Y U. Improving energy performance of water allocation networks through appropriate stream merging[J]. Chinese Journal of Chemical Engineering, 2008, 16(3): 480-484. |
41 | Feng X, Li Y, Shen R. A new approach to design energy efficient water allocation networks[J]. Applied Thermal Engineering, 2009, 29(11/12): 2302-2307. |
42 | Liao Z, Hong X, Jiang B, et al. Novel graphical tool for the design of the heat integrated water allocation networks[J]. AIChE Journal, 2016, 62(3): 670-686. |
43 | Hong X, Liao Z, Sun J, et al. Heat transfer blocks diagram: a novel tool for targeting and design of heat exchanger networks inside heat integrated water allocation networks[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2704-2715. |
44 | Hong X, Liao Z, Sun J, et al. New insights into T-H/H-F diagrams for synthesis of heat exchanger networks inside heat integrated water allocation networks[J]. Industrial & Engineering Chemistry Research, 2018, 57(28): 9323-9328. |
45 | Chin H H, Foo D C Y, Lam H L. Simultaneous water and energy integration with isothermal and non-isothermal mixing - A P-graph approach[J]. Resources, Conservation and Recycling, 2019, 149: 687-713. |
46 | Ahmetović E, Kravanja Z. Simultaneous optimization of heat-integrated water networks involving process-to-process streams for heat integration[J]. Applied Thermal Engineering, 2014, 62(1): 302-317. |
47 | Duran M A, Grossmann I E. Simultaneous optimization and heat integration of chemical processes[J]. AIChE Journal, 1986, 32(1): 123-138. |
[1] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[2] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[3] | Wenting DUAN, Siyue REN, Xiao FENG, Yufei WANG. Distillation column pressure optimization integrated with the heat exchanger network [J]. CIESC Journal, 2022, 73(5): 2052-2059. |
[4] | WANG Dongliang, XIE Jiangpeng, ZHOU Huairong, MENG Wenliang, YANG Yong, LI Delei. Parameters analysis and energy integration in flue gas SO2 capture process based on MDEA [J]. CIESC Journal, 2021, 72(3): 1521-1528. |
[5] | Hong LIU, Yajing ZHAO, Yingdong LI, Pingli LI. Mechanical design and hydraulics simulation of a new complex internal heat integrated distillation column [J]. CIESC Journal, 2020, 71(5): 1995-2003. |
[6] | Xiaozheng GUO, Linlin LIU, Lei ZHANG, Jian DU. Property integration of batch process based on interceptors in semi-continuous operation [J]. CIESC Journal, 2019, 70(2): 516-524. |
[7] | Zhuang ZHANG, Chun DENG, Hailan SUN, Xiao FENG. Modeling and material balance analysis of desalination systems [J]. CIESC Journal, 2019, 70(2): 646-652. |
[8] | DONG Xuan, PENG Xiaoyi, LIAO Zuwei, SUN Jingyuan, JIANG Binbo, WANG Jingdai, YANG Yongrong. Optimal placement of work and heat utilities in chemical plants via energy level grand composite curve [J]. CIESC Journal, 2018, 69(11): 4823-4831. |
[9] | LI Aihong, LIU Zhiyong. Design of distributed wastewater treatment networks of single contaminant with maximum inlet concentration constraints [J]. CIESC Journal, 2016, 67(3): 1015-1021. |
[10] | LI Ruizhen, FENG Xiao, WANG Yufei. Water network optimization with temperature constraints [J]. CIESC Journal, 2015, 66(7): 2581-2587. |
[11] | YE Mengqing, XIE Xin'an, LI Lu, LI Yan. Optimization of a batch water network with multi-contaminants based on matrix encoding genetic algorithm [J]. CIESC Journal, 2015, 66(5): 1838-1843. |
[12] | WANG Jian, LIU Linlin, LI Jianping, DU Jian. Water network synthesis of eco-industrial park considering intra-plant pre-treatment [J]. CIESC Journal, 2015, 66(12): 4910-4915. |
[13] | YANG Youqi, JIA Xiaoping, SHI Lei. Progress of process systems engineering for water network and virtual water studies [J]. CIESC Journal, 2015, 66(1): 32-51. |
[14] | LUO Yiqing, LIU Qiaoqiao, YUAN Xigang. Effect of mixing sequence on heat-integrated water network’s energy performance [J]. CIESC Journal, 2013, 64(S1): 140-146. |
[15] | WU Xianli, WU Lianying, HU Yangdong. Total site gradual energy integration and optimization strategy based on T-H diagram [J]. CIESC Journal, 2013, 64(5): 1696-1703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||