CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 516-524.DOI: 10.11949/j.issn.0438-1157.20181074
• Process system engineering • Previous Articles Next Articles
Xiaozheng GUO(),Linlin LIU(),Lei ZHANG,Jian DU
Received:
2018-09-26
Revised:
2018-10-24
Online:
2019-02-05
Published:
2019-02-05
Contact:
Linlin LIU
通讯作者:
刘琳琳
作者简介:
<named-content content-type="corresp-name">郭孝正</named-content>(1993—),男,硕士研究生,<email>dlutgxz@163.com</email>|刘琳琳(1985—),女,博士,副教授,<email>liulinlin@dlut.edu.cn</email>
基金资助:
CLC Number:
Xiaozheng GUO, Linlin LIU, Lei ZHANG, Jian DU. Property integration of batch process based on interceptors in semi-continuous operation[J]. CIESC Journal, 2019, 70(2): 516-524.
郭孝正, 刘琳琳, 张磊, 都健. 基于截断器半连续操作的间歇过程性质集成[J]. 化工学报, 2019, 70(2): 516-524.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181074
Sources | Period t | F/(kg·h-1) | Composition×106 | Toxicity/% | pH | COD×10-3/(kg O2·m-3) | | |
---|---|---|---|---|---|---|---|---|
process sources(i) | ||||||||
1 | 3 | 8083 | 0.016 | 0.3 | 5.4 | 0.187 | 908.00 | 1.256 |
2 | 4 | 3900 | 0.024 | 0.5 | 4.8 | 92.10 | 1002.43 | 1.220 |
3 | 5 | 3279 | 0.220 | 1.5 | 5.1 | 48.85 | 1046.47 | 1.261 |
fresh sources(r) | ||||||||
1 | — | — | 0 | 0 | 7.0 | 0 | 1000.61 | 1.002 |
2 | — | — | 0.01 | 0.1 | 6.8 | 0.01 | 1002.88 | 0.992 |
Table 1 Date for process and fresh steams[27]
Sources | Period t | F/(kg·h-1) | Composition×106 | Toxicity/% | pH | COD×10-3/(kg O2·m-3) | | |
---|---|---|---|---|---|---|---|---|
process sources(i) | ||||||||
1 | 3 | 8083 | 0.016 | 0.3 | 5.4 | 0.187 | 908.00 | 1.256 |
2 | 4 | 3900 | 0.024 | 0.5 | 4.8 | 92.10 | 1002.43 | 1.220 |
3 | 5 | 3279 | 0.220 | 1.5 | 5.1 | 48.85 | 1046.47 | 1.261 |
fresh sources(r) | ||||||||
1 | — | — | 0 | 0 | 7.0 | 0 | 1000.61 | 1.002 |
2 | — | — | 0.01 | 0.1 | 6.8 | 0.01 | 1002.88 | 0.992 |
Sinks n | Period t | G/(kg·h-1) | CompMax×106 | pHMin | pHMax | | | | |
---|---|---|---|---|---|---|---|---|---|
1 | 10 | 6000 | 0.013 | 5.3 | 8.0 | 817.20 | 1271.2 | 0.900 | 1.202 |
2 | 15 | 4400 | 0.011 | 5.4 | 7.8 | 771.80 | 1135.0 | 0.905 | 2.230 |
3 | 21 | 2490 | 0.100 | 5.2 | 8.2 | 819.47 | 1316.6 | 0.903 | 1.260 |
Table 2 Process sinks data and limits[27]
Sinks n | Period t | G/(kg·h-1) | CompMax×106 | pHMin | pHMax | | | | |
---|---|---|---|---|---|---|---|---|---|
1 | 10 | 6000 | 0.013 | 5.3 | 8.0 | 817.20 | 1271.2 | 0.900 | 1.202 |
2 | 15 | 4400 | 0.011 | 5.4 | 7.8 | 771.80 | 1135.0 | 0.905 | 2.230 |
3 | 21 | 2490 | 0.100 | 5.2 | 8.2 | 819.47 | 1316.6 | 0.903 | 1.260 |
Property | Interceptor | Processing time/h | Conversion factor | Operating cost/(USD·kg-1) | Fixed cost/USD | Variable cost/(USD·period-1) |
---|---|---|---|---|---|---|
composition | REC1 | 2 | 0.02 | 0.0065 | 8000 | 25 |
REC2 | 2 | 0.15 | 0.0033 | 7000 | 18 | |
toxicity | TOX1 | 1 | 0 | 0.0075 | 9000 | 15 |
TOX2 | 1 | 0.1 | 0.0063 | 8200 | 12 | |
COD | AER1 | 1 | 0.2 | 0.0055 | 6800 | 13 |
AER2 | 1 | 0.3 | 0.0043 | 5200 | 11 | |
pH | NEU1 | 1 | 0.5 | 0.0085 | 5200 | 16 |
NEU2 | 1 | 0.7 | 0.0093 | 4800 | 14 | |
NEU3 | 1 | 1.5 | 0.0055 | 3700 | 13 | |
NEU4 | 1 | 1.3 | 0.0065 | 2900 | 12 |
Table 3 Data of property interceptors[27]
Property | Interceptor | Processing time/h | Conversion factor | Operating cost/(USD·kg-1) | Fixed cost/USD | Variable cost/(USD·period-1) |
---|---|---|---|---|---|---|
composition | REC1 | 2 | 0.02 | 0.0065 | 8000 | 25 |
REC2 | 2 | 0.15 | 0.0033 | 7000 | 18 | |
toxicity | TOX1 | 1 | 0 | 0.0075 | 9000 | 15 |
TOX2 | 1 | 0.1 | 0.0063 | 8200 | 12 | |
COD | AER1 | 1 | 0.2 | 0.0055 | 6800 | 13 |
AER2 | 1 | 0.3 | 0.0043 | 5200 | 11 | |
pH | NEU1 | 1 | 0.5 | 0.0085 | 5200 | 16 |
NEU2 | 1 | 0.7 | 0.0093 | 4800 | 14 | |
NEU3 | 1 | 1.5 | 0.0055 | 3700 | 13 | |
NEU4 | 1 | 1.3 | 0.0065 | 2900 | 12 |
Property | Minimum | Maximum |
---|---|---|
composition×106 | 0.005 | 0.05 |
toxicity/% | 0 | 0.05 |
pH | 5.5 | 9 |
COD | 0 | 75 |
Table 4 Environmental constraints[27]
Property | Minimum | Maximum |
---|---|---|
composition×106 | 0.005 | 0.05 |
toxicity/% | 0 | 0.05 |
pH | 5.5 | 9 |
COD | 0 | 75 |
Item | Method of literature[ | Method of this paper |
---|---|---|
fresh resources/(kg·batch-1) | 1545 | 4259 |
fresh cost/(USD·a-1) | 4628.9 | 10333.4 |
number of interceptors | 6 | 3 |
operating cost of interceptor/(USD·a-1) | 38795.6 | 38672.8 |
fixed cost of interceptor/(USD·a-1) | 11100.0 | 6420.0 |
variable cost of interceptor/(USD·a-1) | 77640.6 | 29054.4 |
total cost of interceptor/(USD·a-1) | 127536.2 | 74147.2 |
number of storage tanks | 7 | 5 |
cost of storage tanks/(USD·a-1) | 45237.2 | 61090.4 |
total annual cost/(USD·a-1) | 177402.3 | 145571.0 |
Table 5 Comparison of results
Item | Method of literature[ | Method of this paper |
---|---|---|
fresh resources/(kg·batch-1) | 1545 | 4259 |
fresh cost/(USD·a-1) | 4628.9 | 10333.4 |
number of interceptors | 6 | 3 |
operating cost of interceptor/(USD·a-1) | 38795.6 | 38672.8 |
fixed cost of interceptor/(USD·a-1) | 11100.0 | 6420.0 |
variable cost of interceptor/(USD·a-1) | 77640.6 | 29054.4 |
total cost of interceptor/(USD·a-1) | 127536.2 | 74147.2 |
number of storage tanks | 7 | 5 |
cost of storage tanks/(USD·a-1) | 45237.2 | 61090.4 |
total annual cost/(USD·a-1) | 177402.3 | 145571.0 |
| ——水阱n性质p的性质算子的最大值 |
---|---|
| ——水阱n性质p的性质算子的最小值 |
| ——水阱n在t时刻进口性质p的性质算子 |
| ——废水性质p的性质算子的最大值 |
| ——废水性质p的性质算子的最小值 |
| ——废水性质p的性质算子 |
A f | ——年度因子,A f=0.3 |
| ——性质截断器INT k 的固定费用,USD |
| ——性质截断器INT k 的操作费用,USD·kg-1 |
| ——性质截断器INT k 的可变费用,USD·kg-1 |
| ——前置储罐S k,s 的固定费用,USD |
| ——前置储罐S k,s 的可变费用,USD·kg-1 |
| ——后置储罐U k,u 的固定费用,USD |
| ——后置储罐U k,u 的可变费用,USD·kg-1 |
Cr | ——新鲜水源的单位成本,USD·kg-1 |
| ——水源i在t时刻排出的水量,kg |
| ——水源i在t时刻直接回用至水阱n的水量,kg |
| ——水源i在t时刻进入前置储罐S k,s 的水量,kg |
| ——在t时刻进入水阱n的水量,kg |
| ——在t时刻新鲜水源r供给水阱n的水量,kg |
| ——前置储罐S k,s 的最大存水量,kg |
| ——前置储罐S k,s 在t时刻的水量,kg |
| ——前置储罐S k,s 在t时刻的进水量,kg |
| ——前置储罐S k,s 在t时刻回用至水阱n的水量,kg |
| ——后置储罐U k,u 的最大存水量,kg |
| ——后置储罐U k,u 在t时刻的水量,kg |
| ——后置储罐U k,u 在t时刻回用至水阱n的水量,kg |
| ——一个周期内需要消耗新鲜水源r的总量,kg |
| ——水源i在t时刻直接排废的水量,kg |
| ——流入截断器INT k 的最大流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内的进口流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内的出口流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内流入其他截断器INT k’ 的流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内流入后置缓冲储罐U k,u 的流率,kg·h-1 |
| ——前置储罐S k,s 在时间间隔h内进入性质截断器INT k 的流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内排废的流率,kg·h-1 |
N B | ——每年操作的周期数,N B=333 |
Δth | ——时间间隔h的时长,h |
WW | ——一个周期内排放废水的总量,kg |
yk , m | ——表示性质截断器INT k 候选设备m是否存在的二元变量 |
| ——表示前置储罐S k,s 是否存在的二元变量 |
| ——表示后置储罐U k,u 是否存在的二元变量 |
| ——性质截断器INT k 候选设备m的转化因子 |
| ——过程水源i的性质p的性质算子 |
| ——截断器INT k 在时间间隔h内进口性质p的性质算子 |
| ——截断器INT k 在时间间隔h内出口性质p的性质算子 |
| ——前置储罐S k,s 在t时刻进口性质p的性质算子 |
| ——前置储罐S k,s 在t时刻出口性质p的性质算子 |
| ——后置储罐U k,u 在t时刻出口性质p的性质算子 |
| ——水阱n性质p的性质算子的最大值 |
---|---|
| ——水阱n性质p的性质算子的最小值 |
| ——水阱n在t时刻进口性质p的性质算子 |
| ——废水性质p的性质算子的最大值 |
| ——废水性质p的性质算子的最小值 |
| ——废水性质p的性质算子 |
A f | ——年度因子,A f=0.3 |
| ——性质截断器INT k 的固定费用,USD |
| ——性质截断器INT k 的操作费用,USD·kg-1 |
| ——性质截断器INT k 的可变费用,USD·kg-1 |
| ——前置储罐S k,s 的固定费用,USD |
| ——前置储罐S k,s 的可变费用,USD·kg-1 |
| ——后置储罐U k,u 的固定费用,USD |
| ——后置储罐U k,u 的可变费用,USD·kg-1 |
Cr | ——新鲜水源的单位成本,USD·kg-1 |
| ——水源i在t时刻排出的水量,kg |
| ——水源i在t时刻直接回用至水阱n的水量,kg |
| ——水源i在t时刻进入前置储罐S k,s 的水量,kg |
| ——在t时刻进入水阱n的水量,kg |
| ——在t时刻新鲜水源r供给水阱n的水量,kg |
| ——前置储罐S k,s 的最大存水量,kg |
| ——前置储罐S k,s 在t时刻的水量,kg |
| ——前置储罐S k,s 在t时刻的进水量,kg |
| ——前置储罐S k,s 在t时刻回用至水阱n的水量,kg |
| ——后置储罐U k,u 的最大存水量,kg |
| ——后置储罐U k,u 在t时刻的水量,kg |
| ——后置储罐U k,u 在t时刻回用至水阱n的水量,kg |
| ——一个周期内需要消耗新鲜水源r的总量,kg |
| ——水源i在t时刻直接排废的水量,kg |
| ——流入截断器INT k 的最大流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内的进口流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内的出口流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内流入其他截断器INT k’ 的流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内流入后置缓冲储罐U k,u 的流率,kg·h-1 |
| ——前置储罐S k,s 在时间间隔h内进入性质截断器INT k 的流率,kg·h-1 |
| ——截断器INT k 在时间间隔h内排废的流率,kg·h-1 |
N B | ——每年操作的周期数,N B=333 |
Δth | ——时间间隔h的时长,h |
WW | ——一个周期内排放废水的总量,kg |
yk , m | ——表示性质截断器INT k 候选设备m是否存在的二元变量 |
| ——表示前置储罐S k,s 是否存在的二元变量 |
| ——表示后置储罐U k,u 是否存在的二元变量 |
| ——性质截断器INT k 候选设备m的转化因子 |
| ——过程水源i的性质p的性质算子 |
| ——截断器INT k 在时间间隔h内进口性质p的性质算子 |
| ——截断器INT k 在时间间隔h内出口性质p的性质算子 |
| ——前置储罐S k,s 在t时刻进口性质p的性质算子 |
| ——前置储罐S k,s 在t时刻出口性质p的性质算子 |
| ——后置储罐U k,u 在t时刻出口性质p的性质算子 |
1 | Gouws J F , Majozi T , Foo D C Y , et al . Water minimization techniques for batch processes[J]. Ind. Eng. Chem. Res., 2010, 49(19): 8877-8893. |
2 | Kuo W , Smith R . Designing for the interactions between water-use and effluent treatment[J]. Chemical Engineering Research & Design, 1998, 76(3): 287-301. |
3 | Bagajewicz M J , Faria D C . On the appropriate architecture of the water/wastewater allocation problem in process plants[J]. Computer Aided Chemical Engineering, 2009, 26(9): 1-20. |
4 | Takama N , Kuriyama T , Shiroko K , et al . Optimal water allocation in a petroleum refinery[J]. Computers & Chemical Engineering, 1980, 4(4): 251-258. |
5 | Alva-Argaez A , Kokossis A C , Smith R . Wastewater minimisation of industrial systems using an integrated approach[J]. Computers & Chemical Engineering, 1998, 22(12): S741–S744. |
6 | Cao D , Feng X , Duan X . Design of water network with internal mains for multi-contaminant wastewater regeneration recycle[J]. Chemical Engineering Research & Design, 2004, 82(10): 1331-1336. |
7 | Hu N , Feng X , Deng C . Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition[J]. Chemical Engineering Journal, 2011, 173(1): 80-91. |
8 | Li A H , Yang Y Z , Liu Z Y . Analysis of water-using networks with multiple contaminants involving regeneration recycling[J]. Chemical Engineering Science, 2015, 134: 44-56. |
9 | Wang Y P , Smith R . Design of distributed effluent treatment systems[J]. Chemical Engineering Science, 1994, 49(18): 3127-3145. |
10 | 李冠华, 王乐, 刘永忠 . 间歇用水系统中废水回用与集中再生处理的调度优化设计方法[J]. 化工学报, 2010, 61(2): 378-383. |
Li G H , Wang L , Liu Y Z . Optimal design of batch water-using system with wastewater reuse and centralized treatment through scheduling[J]. CIESC Journal, 2010, 61(2): 378-383. | |
11 | 陈雁玲, 刘琳琳, 都健 . 考虑再生操作的间歇过程用水网络优化研究[J]. 化工进展, 2017, 36(4): 1173-1179. |
Chen Y L , Liu L L , Du J . Optimization of water-using network in batch processes involving regeneration operation[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1173-1179. | |
12 | 都健, 洪水红, 陈理 . 多杂质体系间歇过程用水网络优化[J]. 化工进展, 2012, 31(1): 25-29. |
Du J , Hong S H , Chen L . Optimization of water-using network in a batch processes system with multiple contaminants[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 25-29. | |
13 | 李冠华, 刘永忠, 张进治 . 并联连续再生/再循环的多杂质间歇用水系统优化方法[J]. 化工学报, 2009, 60(1): 134-141. |
Li G H , Liu Y Z , Zhang J Z . Optimization of batch water network with multiple contaminants through continuous regeneration/recycle parallel operation[J]. CIESC Journal, 2009, 60(1): 134-141. | |
14 | Shelley M D , El-Halwagi M M . Component-less design of recovery and allocation systems: a functionality-based clustering approach[J]. Building & Environment, 2000, 24(9/10): 2081-2091. |
15 | Qin X , Gabriel F , Harell D , et al . Algebraic techniques for property integration via componentless design[J]. Ind. Eng. Chem. Res., 2004, 43(14): 3792-3798. |
16 | Foo D C Y , Kazantzi V , El-Halwagi M M , et al . Surplus diagram and cascade analysis technique for targeting property-based material reuse network[J]. Chemical Engineering Science, 2006, 61(8): 2626-2642. |
17 | Grooms D , Kazantzi V , El-Halwagi M M . Optimal synthesis and scheduling of hybrid dynamic/steady-state property integration networks[J]. Comput. Chem. Eng., 2005, 29(11/12): 2318-2325. |
18 | Chen C L , Lee J Y , Ng D K S , et al . A unified model of property integration for batch and continuous processes[J]. AIChE Journal, 2009, 56(7): 1845-1858. |
19 | Kheireddine H , Dadmohammadi Y , Deng C , et al . Optimization of direct recycle networks with the simultaneous consideration of property, mass, and thermal effects[J]. Ind. Eng. Chem. Res., 2011, 50(7): 3754-3762. |
20 | Jiménez-Gutiérrez A , Lona-Ramírez J , Ponce-Ortega J M , et al . An MINLP model for the simultaneous integration of energy, mass and properties in water networks[J]. Comput. Chem. Eng., 2014, 71: 52-66. |
21 | 文增坤, 邓春, 冯霄,等 . 三角图示法合成性质集成水网络[J]. 华东理工大学学报(自然科学版), 2013, 39(2): 138-142. |
Wen Z K , Deng C , Feng X , et al . Ternary diagram approach for synthesis of property integration water network [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(2): 138-142. | |
22 | Ng D K S , Foo D C Y , Rabie A , et al . Simultaneous synthesis of property-based water reuse/recycle and interception networks for batch processes[J]. AIChE Journal, 2008, 54(10): 2624-2632. |
23 | Ponce-Ortega J M , Carolina H A , Mahmoud E H , et al . A property-based optimization of direct recycle networks and wastewater treatment processes[J]. AIChE Journal, 2009, 55(9): 2329-2344. |
24 | 杨彩玲, 刘琳琳, 都健 . 考虑环境及处理单元流股回用的多性质用水网络集成[J]. 化工学报, 2015, 66(12): 4916-4921. |
Yang C L , Liu L L , Du J . Water utilization networks integration with multiple-property based on environment and treated water reused[J]. CIESC Journal, 2015, 66(12): 4916-4921. | |
25 | Ponce-Ortega J M , El-Halwagi M M , Jiménez-Gutiérrez A . Global optimization for the synthesis of property-based recycle and reuse networks including environmental constraints[J]. Computers & Chemical Engineering, 2010, 34(3): 318-330. |
26 | Nápoles-Rivera F , Ponce-Ortega J M , El-Halwagi M M , et al . Global optimization of mass and property integration networks with in-plant property interceptors[J]. Chemical Engineering Science, 2010, 65(15): 4363-4377. |
27 | Vázquez-Castillo J A , Ponce-Ortega J M , Segovia-Hernández J G , et al . A multi-objective approach for property-based synthesis of batch water networks[J]. Chemical Engineering & Processing, 2013, 65(7): 83-96. |
28 | Lira-Barragán L F , Ponce-Ortega J M , Nápoles-Rivera F , et al . Incorporating property-based water networks and surrounding watersheds in site selection of industrial facilities[J]. Ind. Eng. Chem. Res., 2012, 52(1): 91-97. |
29 | Sotelo-Pichardo C , Bamufleh H S , Ponce-Ortega J M , et al . Optimal synthesis of property-based water networks considering growing demand projections[J]. Ind. Eng. Chem. Res., 2014, 53(47): 18260-18272. |
30 | Rosenthal R E . GAMS-A User s Guide[M]. Washington DC: GAMS Development Corporation, 2012. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[9] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[13] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[14] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||