1 |
雷萌, 李明. 采用KPCA特征提取的近红外煤炭发热量预测模型[J]. 化工学报, 2012, 63(12): 3991-3995.
|
|
Lei M, Li M. NIRS prediction model of calorific value of coal with KPCA feature extract[J]. CIESC Journal, 2012, 63(12): 3991-3995.
|
2 |
吴文娟, 李东, 王国祥, 等. 血液在可见光及近红外范围内随温度变化的动态吸收特性[J]. 化工学报, 2013, 64(4): 1157-1162.
|
|
Wu W J, Li D, Wang G X, et al. Dynamic optical absorption characteristic of human blood in visible- and near-infrared light with variable temperature[J]. CIESC Journal, 2013, 64(4): 1157-1162.
|
3 |
Marques E J N, de Freitas S T. Performance of new low-cost handheld NIR spectrometers for nondestructive analysis of umbu (Spondias tuberosa Arruda) quality[J]. Food Chem., 2020, 323: 126820.
|
4 |
Balabin R M, Safieva R Z. Gasoline classification by source and type based on near infrared (NIR) spectroscopy data[J]. Fuel, 2008, 87(7): 1096-1101.
|
5 |
He K X, Zhong M Y, Du W L. Weighted incremental minimax probability machine-based method for quality prediction in gasoline blending process[J]. Chemometrics Intell. Lab. Syst., 2020, 196:103909.
|
6 |
Wang Y F, Wang K, Zhou Z, et al. Modeling of oil near-infrared spectroscopy based on similarity and transfer learning algorithm[J]. Front. Chem. Sci. Eng., 2019, 13: 599-607
|
7 |
He K X, Cheng H, Du W L, et al. Online updating of NIR model and its industrial application via adaptive wavelength selection and local regression strategy[J]. Chemometrics Intell. Lab. Syst., 2014, 134: 79-88.
|
8 |
Liu J, Luan X L, Liu F. Adaptive JIT-Lasso modeling for online application of near infrared spectroscopy[J]. Chemometrics Intell. Lab. Syst., 2018, 183: 90-95.
|
9 |
He K X, Qian F, Cheng H, et al. A novel adaptive algorithm with near-infrared spectroscopy and its application in online gasoline blending processes[J]. Chemometrics Intell. Lab. Syst., 2015, 140: 117-125.
|
10 |
Agelet L E, Hurburgh C R. A tutorial on near infrared spectroscopy and its calibration[J]. J. Crit. Rev. Anal. Chem., 2010, 40(4): 246-260.
|
11 |
Killner M H M, Rohwedder J J R, Pasquini C. A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction[J]. Fuel, 2011, 90(11): 3268-3273.
|
12 |
Chen Q, Zhao J, Liu M, et al. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms[J]. J. Pharm. Biomed. Anal., 2008, 46(3): 568-573.
|
13 |
Cai W, Li Y, Shao X. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra[J]. Chemom. Intell. Lab. Syst., 2008, 90(2): 188-194.
|
14 |
Arakawa M, Yamashita Y, Funatsu K. Genetic algorithm-based wavelength selection method for spectral calibration[J]. J. Chemometr.. 2011, 25(1): 10-19.
|
15 |
Cao H, Zhou Y. Near-infrared spectra quantitative analysis for flue gas of thermal power plant based on wavelength selection[J]. Scientific Research and Essays., 2014, 9(9): 288-292.
|
16 |
Chong I G, Jun H C. Performance of some variable selection methods when multicollinearity is present[J]. Chemom. Intell. Lab. Syst., 2005, 78(1/2): 103-112.
|
17 |
Deng B C, Yun Y, Liang Y, et al. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling[J]. Analyst, 2014, 139(19):4836-4845.
|
18 |
Wang K, Du W L, Long J. Near-infrared wavelength-selection method based on joint mutual information and weighted bootstrap sampling[J]. IEEE Trans. Ind. Inform., 2020, 16(9): 5884-5894.
|
19 |
Shan R, Cai W, Shao X. Variable selection based on locally linear embedding mapping for near-infrared spectral analysis[J]. Chemom. Intell. Lab. Syst., 2014, 131: 31-36.
|
20 |
Mehmood T, de Liland K H, Snipen L, et al. A review of variable selection methods in Partial Least Squares Regression[J]. Chemom. Intell. Lab. Syst., 2012, 118: 62-69.
|
21 |
Zou X B, Zhao J W, Li Y X. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’apple based on BiPLS and FiPLS models[J]. Vib. Spectrosc., 2007, 44(2): 220-227.
|
22 |
Wang X F, Bao Y F, Liu G L, et al. Study on the best analysis spectral section of NIR to detect alcohol concentration based on SiPLS[J]. Procedia Engineering, 2012, 29: 2285-2290.
|
23 |
Jiang J H, Berry R J, Siesler H W, et al. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data[J]. Anal.Chem., 2002, 74(14): 3555-3565.
|
24 |
Deng B, Yun Y, Ma P, et al. A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals[J]. Analyst, 2015, 140(6):1876-1885.
|
25 |
Kaneko H, Funatsu K. A new process variable and dynamics selection method based on a genetic algorithm-based wavelength selection method[J]. AIChE J., 2012, 58(6): 1829-1840.
|
26 |
Arakawaa M, Yamashitaa Y, Funatsu K. Genetic algorithm-based wavelength selection method for spectral calibration[J]. J. Chemom., 2010, 25(1): 10-19.
|
27 |
Rasmussen C E, Williams C K I. Gaussian Processes for Machine Learning[M]//Cambridge, MA: MIT Press, 2006: 67-75.
|
28 |
Chen T, Wang B. Bayesian variable selection for Gaussian process regression: application to chemometric calibration of spectrometers[J]. Neurocomputing, 2010, 73(13/14/15): 2718-2726.
|
29 |
Ni W, Nørgaard L, Mørup M. Non-linear calibration models for near infrared pectroscopy[J]. Anal. Chim. Acta, 2014, 813: 1-14.
|
30 |
Wang B, Shi J. Generalized Gaussian process regression model for non-Gaussian functional data[J]. J. Am. Stat. Assoc., 2014, 109(507): 1123-1133.
|
31 |
Le Gratiet L, Garnier J. Asymptotic analysis of the learning curve for Gaussian process regression[J]. Mach. Learn., 2015, 98(3): 407-433.
|