CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5035-5042.DOI: 10.11949/0438-1157.20200790
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Yating ZHANG1(),Wenjie XIONG1(),Tianxiang ZHAO2,3,Chenfei YAO1,Yucheng DING1,Xiaomin ZHANG1(),Youting WU1,Xingbang HU1()
Received:
2020-06-22
Revised:
2020-09-11
Online:
2020-11-05
Published:
2020-11-05
Contact:
Xiaomin ZHANG,Xingbang HU
张雅婷1(),熊文杰1(),赵天翔2,3,姚晨飞1,丁宇宬1,张效敏1(),吴有庭1,胡兴邦1()
通讯作者:
张效敏,胡兴邦
作者简介:
张雅婷(1998—),女,硕士研究生,基金资助:
CLC Number:
Yating ZHANG,Wenjie XIONG,Tianxiang ZHAO,Chenfei YAO,Yucheng DING,Xiaomin ZHANG,Youting WU,Xingbang HU. High capacity absorption of SO2 using imidazole ionic liquid mixtures[J]. CIESC Journal, 2020, 71(11): 5035-5042.
张雅婷,熊文杰,赵天翔,姚晨飞,丁宇宬,张效敏,吴有庭,胡兴邦. 咪唑类离子液体混合物用于二氧化硫高效吸收[J]. 化工学报, 2020, 71(11): 5035-5042.
Add to citation manager EndNote|Ris|BibTeX
离子液体 | ρ - T | η - T | |||||
---|---|---|---|---|---|---|---|
A | B | R2 | a | b | c | R2 | |
[Emim][OAc] | 1.124 | -6.16×10-4 | 0.9989 | 73.35 | -0.34 | 4.58×10-4 | 0.9992 |
[Emim][Cl]0.75[OAc]0.25 | 1.151 | -5.94×10-4 | 0.9999 | 83.00 | -0.44 | 5.97×10-4 | 0.9978 |
[Emim][Cl]0.66[OAc]0.33 | 1.145 | -5.93×10-4 | 0.9999 | 65.79 | -0.34 | 4.60×10-4 | 0.9999 |
[Emim][Cl]0.5[OAc]0.5 | 1.140 | -6.06×10-4 | 0.9998 | 64.66 | -0.40 | 5.51×10-5 | 0.9999 |
[Emim][Cl]0.33[OAc]0.66 | 1.334 | -6.12×10-4 | 0.9999 | 78.22 | -0.42 | 5.89×10-6 | 0.9992 |
[Emim][Cl]0.25[OAc]0.75 | 1.133 | -6.09×10-4 | 0.9999 | 69.07 | -0.37 | 5.06×10-4 | 0.9998 |
Table 1 Density-temperature and viscosity-temperature model parameters
离子液体 | ρ - T | η - T | |||||
---|---|---|---|---|---|---|---|
A | B | R2 | a | b | c | R2 | |
[Emim][OAc] | 1.124 | -6.16×10-4 | 0.9989 | 73.35 | -0.34 | 4.58×10-4 | 0.9992 |
[Emim][Cl]0.75[OAc]0.25 | 1.151 | -5.94×10-4 | 0.9999 | 83.00 | -0.44 | 5.97×10-4 | 0.9978 |
[Emim][Cl]0.66[OAc]0.33 | 1.145 | -5.93×10-4 | 0.9999 | 65.79 | -0.34 | 4.60×10-4 | 0.9999 |
[Emim][Cl]0.5[OAc]0.5 | 1.140 | -6.06×10-4 | 0.9998 | 64.66 | -0.40 | 5.51×10-5 | 0.9999 |
[Emim][Cl]0.33[OAc]0.66 | 1.334 | -6.12×10-4 | 0.9999 | 78.22 | -0.42 | 5.89×10-6 | 0.9992 |
[Emim][Cl]0.25[OAc]0.75 | 1.133 | -6.09×10-4 | 0.9999 | 69.07 | -0.37 | 5.06×10-4 | 0.9998 |
ILs | SO2 absorption at 20℃/(g/g) | Ref. |
---|---|---|
[Emim][Cl]0.75[OAc]0.25 | 1.32±0.08 | this work |
[Emim][Cl]0.66[OAc]0.33 | 1.33±0.08 | this work |
[Emim][Cl]0.5[OAc]0.5 | 1.20±0.07 | this work |
[Emim][Cl]0.33[OAc]0.66 | 1.34±0.08 | this work |
[DMDEEH][MOAc] | 1.02 | [ |
[DMDEEH][EOAc] | 1.06 | [ |
[DMDEEH][MEAAc] | 1.04 | [ |
[EDBEAH][MOAc] | 0.34 | [ |
[TMPDAH][BAc] | 1.23 | [ |
EminCl-AA(2∶1) | 1.39 | [ |
[NH2Emim][OAc]-[Bmim][OH] (1∶1) | 0.36① | [ |
[N2222][FA]/PEG200 | 0.46② | [ |
[Ch][FA]/PEG200 | 0.30② | [ |
[TMG][SUC] | 0.88① | [ |
[TMG][SUB] | 0.95 | [ |
[TMG][DOD] | 0.83 | [ |
[Emim][SCN] | 1.13 | [ |
[Emim][C(CN)3] | 0.74 | [ |
[Emim][Cl] | 1.20③ | [ |
[C4Py][SCN] | 0.44 | [ |
[C4Py][BF4] | 0.84 | [ |
[Emim][Cl][SCN](1∶1) | 1.22 | [ |
ChCl-EG (1∶2) | 0.70 | [ |
ChCl-thiourea (1∶1) | 0.88 | [ |
Table 2 SO2 absorption capacities of different systems
ILs | SO2 absorption at 20℃/(g/g) | Ref. |
---|---|---|
[Emim][Cl]0.75[OAc]0.25 | 1.32±0.08 | this work |
[Emim][Cl]0.66[OAc]0.33 | 1.33±0.08 | this work |
[Emim][Cl]0.5[OAc]0.5 | 1.20±0.07 | this work |
[Emim][Cl]0.33[OAc]0.66 | 1.34±0.08 | this work |
[DMDEEH][MOAc] | 1.02 | [ |
[DMDEEH][EOAc] | 1.06 | [ |
[DMDEEH][MEAAc] | 1.04 | [ |
[EDBEAH][MOAc] | 0.34 | [ |
[TMPDAH][BAc] | 1.23 | [ |
EminCl-AA(2∶1) | 1.39 | [ |
[NH2Emim][OAc]-[Bmim][OH] (1∶1) | 0.36① | [ |
[N2222][FA]/PEG200 | 0.46② | [ |
[Ch][FA]/PEG200 | 0.30② | [ |
[TMG][SUC] | 0.88① | [ |
[TMG][SUB] | 0.95 | [ |
[TMG][DOD] | 0.83 | [ |
[Emim][SCN] | 1.13 | [ |
[Emim][C(CN)3] | 0.74 | [ |
[Emim][Cl] | 1.20③ | [ |
[C4Py][SCN] | 0.44 | [ |
[C4Py][BF4] | 0.84 | [ |
[Emim][Cl][SCN](1∶1) | 1.22 | [ |
ChCl-EG (1∶2) | 0.70 | [ |
ChCl-thiourea (1∶1) | 0.88 | [ |
1 | Solarin S A, Tiwari A. Convergence in sulphur dioxide (SO2) emissions since 1850 in OECD countries: evidence from a new panel unit root test[J]. Environmental Modeling & Assessment, 2020, 25(5): 665-675. |
2 | Tang L, Xue X D, Jia M. Iron and steel industry emissions and contribution to the air quality in China[J].Atmospheric Environment, 2020, 237: 117668. |
3 | Fang D, Liao X, Zhang X F, et al. A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: as a reductant to remove chromium and vanadium from vanadium industrial waste water[J]. Journal of Hazardous Materials, 2018, 34: 436-445. |
4 | Córdoba P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-286. |
5 | Duo Y K, Wang X P, He J J, et al. Simultaneous removal of SO2 and NO by Fe-II(EDTA) solution: promotion of Mn powder and mechanism of reduction[J]. Environmental Science and Pollution Research, 2019, 26(28): 28808-28816. |
6 | 韩天义, 姚远, 徐珺, 等.吸湿剂、表面活性剂及催化剂对烟气循环流化床脱硫的增效机制[J]. 化工学报, 2018, 69(9): 4044-4050. |
Han T Y, Yao Y, Xu J, et al. Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed[J]. CIESC Journal, 2018, 69(9): 4044-4050. | |
7 | Lei Z, Dai C, Chen B. Gas solubility in ionic liquids[J]. Chemical Reviews, 2014, 114(2): 1289-1326. |
8 | Cui G, Wang J, Zhang S. Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chemical Society Reviews, 2016, 45(15): 4307-4339. |
9 | Zhao T, Li Y, Zhang Y, et al. Efficient SO2 capture and fixation to cyclic sulfites by dual ether-functionalized protic ionic liquids without any additives[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10886-10895. |
10 | Zhao T, Liang J, Zhang Y, et al. Unexpectedly efficient SO2 capture and conversion to sulfur in novel imidazole-based deep eutectic solvents[J]. Chemical Communications, 2018, 54(65): 8964-8967. |
11 | Li W, Liu Y, Wang L, et al. Using ionic liquid mixtures to improve the SO2 absorption performance in flue gas[J]. Energy & Fuels, 2017, 31(2): 1771-1777. |
12 | Jiang Y, Liu X, Deng D. Absorption of SO2 in furoate ionic liquids/PEG200 mixtures and thermodynamic analysis[J]. Journal of Chemical & Engineering Data, 2018, 63(2): 259-268. |
13 | Yang D, Han Y, Qi H, et al. Efficient absorption of SO2 by EmimCl-EG deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6382-6386. |
14 | Wu W, Han B, Gao H, et al. Desulfurization of flue gas: SO2 absorption by an ionic liquid[J]. Angewandte Chemie-International Edition, 2004, 43: 2415-2417. |
15 | 邓晓霞, 龚磊, 刘小棒, 等. 咪唑类三元低共熔溶剂捕集低压SO2的实验研究[J]. 化工学报, 2020, 71(1): 368-375. |
Deng X X, Gong L, Liu X B, et al. Study on the capture of low pressure SO2 by imidazole-based ternary deep eutectic solvents[J]. CIESC Journal, 2020, 71(1): 368-375. | |
16 | Meng X, Wang J, Xie P, et al. Structure and SO2 absorption properties of guanidinium-based dicarboxylic acid ionic liquids[J]. Energy & Fuels, 2018, 32(2): 1956-1962. |
17 | Li Z L, Zhou L S, Wei Y H, et al. Highly efficient, reversible, and selective absorption of SO2 in 1-ethyl-3-methylimidazolium chloride plus imidazole deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13696-13705. |
18 | Wang C, Zheng J, Cui G, et al. Highly efficient SO2 capture through tuning the interaction between anion-functionalized ionic liquids and SO2[J]. Chemical Communications, 2013, 49(12): 1166-1168. |
19 | Zhang H M, Jiang B, Yang N, et al. Highly efficient and reversible absorption of SO2 from flue gas using diamino polycarboxylate protic ionic liquid aqueous solutions[J]. Energy & Fuels, 2019, 33(9): 8937-8945. |
20 | Xing H, Liao C, Yang Q, et al. Ambient lithium-SO2 batteries with ionic liquids as electrolytes[J]. Angewandte Chemie-International Edition, 2014, 53(8): 2099-2103. |
21 | Zeng S, Gao H, Zhang X, et al. Efficient and reversible capture of SO2 by pyridinium-based ionic liquids[J]. Chemical Engineering Journal, 2014, 251: 248-256. |
22 | Yang D, Cui G, Lv M. Efficient absorption of SO2 by [Emim][Cl]-[Emim][SCN] ionic liquid mixtures[J]. Energy & Fuels, 2018, 32(10): 10796-10800. |
23 | Sun S, Niu Y, Xu Q, et al. Efficient SO2 absorptions by four kinds of deep eutectic solvents based on choline chloride[J]. Industrial & Engineering Chemistry Research, 2015, 54(33): 8019-8024. |
24 | Yang D, Zhang S, Jiang D, et al. SO2 absorption in EmimCl-TEG deep eutectic solvents[J]. Physical Chemistry Chemical Physics, 2018, 20: 15168-15173. |
25 | Wang L, Zhang Y, Liu Y, et al. SO2 absorption in pure ionic liquids: solubility and functionalization [J]. Journal of Hazardous Materials, 2020, 392: 122504. |
26 | Mondal A, Balasubramanian S. Understanding SO2 capture by ionic liquids [J]. The Journal of Physical Chemistry B, 2016, 120(19): 4457-4466. |
27 | Zhu J, Xu Y, Feng X, et al. A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: their influence on SO2 absorption behavior[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 148-155. |
28 | Souckova M, Klomfar J, Patek J. Group contribution and parachor analysis of experimental data on density and surface tension for members of the homologous series of 1-Cn-3-methylimidazolium chlorides [J]. Fluid Phase Equilibria, 2017, 454: 43-56. |
29 | Freire M G, Teles A R, Rocha M A, et al. Thermophysical characterization of ionic liquids able to dissolve biomass [J]. Journal of Chemical & Engineering Data, 2011, 56: 4813-4822. |
30 | Araujo J M, Pereiro A B, Alves F, et al. Nucleic acid bases in 1-alkyl-3-methylimidazolium acetate ionic liquids: a thermophysical and ionic conductivity analysis [J]. The Journal of Chemical Thermodynamics, 2013, 57: 1-8. |
31 | Vitz E, Erdmenger T, Haensch C, et al. Extended dissolution studies of cellulose in imidazolium based ionic liquids [J]. Green Chemistry, 2009, 11: 417-424. |
32 | Huang K, Wu Y T, Hu X B. Effect of alkalinity on absorption capacity and selectivity of SO2 and H2S over CO2: substituted benzoate-based ionic liquids as the study platform [J]. Chemical Engineering Journal, 2016, 297: 265-276. |
33 | Zheng W T, Huang K, Wu Y T, et al. Protic ionic liquid as excellent shuttle of MDEA for fast capture of CO2 [J]. AIChE Journal, 2018, 64: 209-219. |
34 | 崔国凯, 赵宁, 张峰涛, 等. 离子液体捕集二氧化硫气体的研究进展[J]. 科学通报, 2016, 61: 3115-3126. |
Cui G K, Zhao N, Zhang F T, et al. Progress in SO2 capture by ionic liquids[J]. Chinese Science Bulletin, 2016, 61: 3115-3126. | |
35 | Ando R A, Siqueira L J A, Bazito F C, et al. The sulfur dioxide-1-butyl-3-methylimidazolium bromide interaction: drastic changes in structural and physical properties[J]. The Journal of Physical Chemistry B, 2007, 111(30): 8717-8719. |
36 | Ren S, Hou Y, Wu W, et al. Properties of ionic liquids absorbing SO2 and the mechanism of the absorption[J]. The Journal of Physical Chemistry B, 2010, 114(6): 2175-2179. |
37 | Zhao Q, Zhao W, Chai M, et al. Phase-change absorption of SO2 by N, N, N′, N′-tetramethyl-p-phenylenediamine in organic solvents and utilization of absorption product[J]. Energy & Fuels, 2018, 32(2): 2073-2080. |
38 | Chen Y, Jiang B, Dou H, et al. Highly efficient and reversible capture of low partial pressure SO2 by functional deep eutectic solvents[J]. Energy & Fuels, 2018, 32(10): 10737-10744. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[7] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[8] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[9] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[10] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[11] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[12] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[13] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[14] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[15] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||