CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4918-4926.DOI: 10.11949/0438-1157.20200803
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Guoqiang YANG(),Wei ZENG,Huaxun LUO,Gaodong YANG,Zhibing ZHANG()
Received:
2020-06-22
Revised:
2020-09-06
Online:
2020-11-05
Published:
2020-11-05
Contact:
Zhibing ZHANG
通讯作者:
张志炳
作者简介:
杨国强(1988—),男,博士,副研究员,基金资助:
CLC Number:
Guoqiang YANG,Wei ZENG,Huaxun LUO,Gaodong YANG,Zhibing ZHANG. Study on the characteristics of micro-interface intensified oxidation of ammonium sulfite[J]. CIESC Journal, 2020, 71(11): 4918-4926.
杨国强,曾伟,罗华勋,杨高东,张志炳. 亚硫酸铵微界面强化氧化特性研究[J]. 化工学报, 2020, 71(11): 4918-4926.
Add to citation manager EndNote|Ris|BibTeX
亚硫酸铵 浓度/(mol/L) | 密度ρl/ (kg/m3) | 表面张力σl/ (N/m) | 动力黏度μl/ (Pa·s) | pH |
---|---|---|---|---|
0.06 | 993.2 | 39.58×10-3 | 0.87×10-3 | 7.776 |
0.10 | 996.1 | 37.09×10-3 | 0.95×10-3 | 7.751 |
0.13 | 998.3 | 36.32×10-3 | 0.97×10-3 | 7.732 |
Table 1 Physical properties of solution
亚硫酸铵 浓度/(mol/L) | 密度ρl/ (kg/m3) | 表面张力σl/ (N/m) | 动力黏度μl/ (Pa·s) | pH |
---|---|---|---|---|
0.06 | 993.2 | 39.58×10-3 | 0.87×10-3 | 7.776 |
0.10 | 996.1 | 37.09×10-3 | 0.95×10-3 | 7.751 |
0.13 | 998.3 | 36.32×10-3 | 0.97×10-3 | 7.732 |
亚硫酸铵浓度/ (mol/L) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
0.06 | 1726.63 | 5241.79 | 32.94% |
0.10 | 1334.73 | 4997.27 | 26.71% |
0.13 | 703.28 | 4134.18 | 17.01% |
Table 2 Sauter mean diameters under different ammonium sulfite concentrations
亚硫酸铵浓度/ (mol/L) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
0.06 | 1726.63 | 5241.79 | 32.94% |
0.10 | 1334.73 | 4997.27 | 26.71% |
0.13 | 703.28 | 4134.18 | 17.01% |
空气进料量/ (L/h) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
40 | 592.84 | 3402.77 | 17.42% |
100 | 636.67 | 3851.50 | 16.53% |
200 | 703.28 | 4134.18 | 17.01% |
300 | 1108.31 | 5555.37 | 19.95% |
Table 3 Sauter mean diameters under different gas flowrates
空气进料量/ (L/h) | d32/μm | 效果对比 (MIR∶BCR) | |
---|---|---|---|
MIR | BCR | ||
40 | 592.84 | 3402.77 | 17.42% |
100 | 636.67 | 3851.50 | 16.53% |
200 | 703.28 | 4134.18 | 17.01% |
300 | 1108.31 | 5555.37 | 19.95% |
1 | Stacy C J, Melick C A, Cairncross R A. Esterification of free fatty acids to fatty acid alkyl esters in a bubble column reactor for use as biodiesel[J]. Fuel Processing Technology, 2014, 124(8): 70-77. |
2 | Farmer T C, McFarland E W, Doherty M F. Membrane bubble column reactor model for the production of hydrogen by methane pyrolysis[J]. International Journal of Hydrogen Energy, 2019, 4(29): 14721-14731. |
3 | Adhami M, Jamshidi N, Zarghami R, et al. Characterization of hydrodynamics of bubble columns by recurrence quantification analysis[J]. Chaos, Solitons & Fractals, 2018, 111: 213-226. |
4 | Wei B S, Jie Y, Guang L, et al. Modelling of breakage rate and bubble size distribution in bubble columns accounting for bubble shape variations[J]. Chemical Engineering Science, 2018, 187: 391-405. |
5 | Shu S L, Vidal D, Bertrand F, et al. Multiscale multiphase phenomena in bubble column reactors: a review[J]. Renewable Energy, 2019, 141: 613-631. |
6 | Joshi J B, Vitankar V S, Kulkarni A A, et al. Coherent flow structures in bubble column reactors[J]. Chemical Engineering Science, 2002, 57(16): 3157-3183. |
7 | García-Abuín A, Gómez-Díaz D, Losada M, et al. Bubble column gas-liquid interfacial area in a polymer+surfactant+water system[J]. Chemical Engineering Science, 2012, 75: 334-341. |
8 | Patel S, Daly J, Bukur D. Holdup and interfacial area measurements using dynamic gas disengagement[J]. AIChE Journal, 1989, 35: 931-942. |
9 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
10 | 张志炳, 田洪舟, 王丹亮, 等. 气液反应体系相界面传质强化研究[J]. 化学工程, 2016, 44(3): 1-8. |
Zhang Z B, Tian H Z, Wang D L, et al. Intensification of interfacial mass transfer in gas-liquid reaction systems [J]. Chemical Engineering (China), 2016, 44(3): 1-8. | |
11 | Levenspiel O. Chemical Reaction Engineering [M]. 3rd ed. New York: John Wiley & Sons Inc., 1999. |
12 | Wen J, Sun Q, Sun Z, et al. An improved image processing technique for determination of volume and surface area of rising bubble[J]. International Journal of Multiphase Flow, 2018, 104: 294-306. |
13 | Zaruba A, Krepper E, Prasser H M, et al. Measurement of bubble velocity profiles and turbulent diffusion coefficients of the gaseous phase in rectangular bubble column using image processing[J]. Experimental Thermal and Fluid Science, 2005, 29(7): 851-860. |
14 | Zhou J, Li W, Xiao W. Kinetics of heterogeneous oxidation of concentrated ammonium sulfite[J]. Chemical Engineering Science, 2000, 55(23): 5637-5641. |
15 | Wang L, Wu S, Liu S, et al. Cobalt impregnated porous catalyst promoting ammonium sulfate recovery in an ammonia-based desulfurization process[J]. Chemical Engineering Journal, 2018, 331: 416-424. |
16 | Guo S, Wang J, Chen X, et al. Kinetics and reaction mechanism of catalytic oxidation of ammonium sulfite[J]. Asian Journal of Chemistry, 2014, 26(1): 69-74. |
17 | Mishra G C, Srivastava R D. Kinetics of heterogeneous oxidation of ammonium sulphite[J]. Journal of Applied Chemistry & Biotechnology, 1976, 26(1): 401-405. |
18 | Craig V S, Ninham B W, Pashley R M. The effect of electrolytes on bubble coalescence in water[J]. Journal of Physical Chemistry, 1993, 97(39): 10192-10197. |
19 | Deschenes L A, Barrett J, Muller L J, et al. Inhibition of bubble coalescence in aqueous solutions (1): Electrolytes[J]. Journal of Physical Chemistry B, 1998, 102(26): 5115-5119. |
20 | Besagni G, Inzoli F. The effect of electrolyte concentration on counter-current gas-liquid bubble column fluid dynamics: gas holdup, flow regime transition and bubble size distributions[J]. Chemical Engineering Research and Design, 2017, 118: 170-193. |
21 | Marrucci G, Nicodemo L. Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes[J]. Chemical Engineering Science, 1967, 22(9): 1257-1265. |
22 | Lessard R R, Zieminski S A. Bubble coalescence and gas transfer in aqueous electrolytic solutions[J]. Industrial & Engineering Chemistry Fundamentals, 1971, 10(2): 260-269. |
23 | 胡华, 朱德权, 刘永民, 等. 电解质对溶液中气泡大小的影响[J]. 清华大学学报(自然科学版), 1995, (3): 106-110. |
Hu H, Zhu D Q, Liu Y M, et al. Effect of electrolyte on bubble size in solution[J]. Journal of Tsinghua University (Sci. & Tech.), 1995, (3): 106-110. | |
24 | Akita K, Yoshida F. Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns[J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 84-91. |
25 | Camarasa E, Vial C, Poncin S, et al. Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column[J]. Chemical Engineering and Processing: Process Intensification, 1999, 38(4): 329-344. |
26 | Basha O M, Morsi B I. Novel approach and correlation for bubble size distribution in a slurry bubble column reactor operating in the churn-turbulent flow regime[J]. Industrial & Engineering Chemistry Research, 2018, 57(16): 5705-5716. |
27 | Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. |
28 | Kazakis N, Mouza A A, Paras S V. Experimental study of bubble formation at metal porous spargers: effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265-281. |
29 | Ramezani M, Mostoufi N, Mehrnia M. Improved modeling of bubble column reactors by considering the bubble size distribution[J]. Industrial & Engineering Chemistry Research, 2012, 51: 5705-5714. |
30 | Levenspiel O. Chemical reaction engineering[J]. Industrial & Engineering Chemistry Research, 1999, 38(11): 4140-4143. |
31 | Cho J S, Wakao N. Determination of liquid-side and gas-side volumetric mass transfer coefficients in a bubble column[J]. Journal of Chemical Engineering of Japan, 1988, 21(6): 576-581. |
32 | Wilkinson P M, Haringa H, Dierendonck L. Mass transfer and bubble size in a bubble column under pressure[J]. Chemical Engineering Science, 1994, 49(9): 1417-1427. |
[1] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[2] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[3] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[4] | Hao CHEN, Yijuan TIAN, Xuejun QUAN, Ziwen JIANG, Gang LI. Decomposition behaviour of chromite in the HCl-HF system [J]. CIESC Journal, 2023, 74(3): 1161-1174. |
[5] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[6] | Mengxi LIU, Yiping FAN, Zihan YAN, Xiuying YAO, Chunxi LU. Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser [J]. CIESC Journal, 2022, 73(6): 2496-2513. |
[7] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[8] | ZHANG Yashuang, LI Hong, CONG Haifeng, HAN Hongming, LI Xingang, GAO Xin. Numerical simulation of microwave-enhanced spiral liquid-bridge falling film evaporator [J]. CIESC Journal, 2021, 72(S1): 227-235. |
[9] | CHU Guangwen,LIAO Honggang,WANG Dan,LI Hui,LI Sa,JIANG Hong,JIN Wanqin,CHEN Jianfeng. Gas-liquid reaction process intensification at micro-/nano-mesoscale [J]. CIESC Journal, 2021, 72(7): 3435-3444. |
[10] | JIANG Lan, LUO Yong, ZOU Haikui, SUN Baochang, ZHANG Liangliang, CHU Guangwen. Research progress of HiGee multiphase catalytic reactor [J]. CIESC Journal, 2021, 72(6): 3194-3201. |
[11] | WANG Guanqiu, LIN Guanyi, ZHU Chunying, FU Taotao, MA Youguang. One-dimensional amplification and gas-liquid mass transfer characteristics of microchannel reactor [J]. CIESC Journal, 2021, 72(2): 937-944. |
[12] | Jiyizhe ZHANG, Yundong WANG, Weiyang FEI. A states-of-the-art review on research progresses and prospects of liquid-liquid extraction columns [J]. CIESC Journal, 2021, 72(12): 6016-6029. |
[13] | Huahai ZHANG, Yuelin WANG, Banghao LI, Tiefeng WANG. Review of bubble breakup modelling and experimental study in turbulent flow [J]. CIESC Journal, 2021, 72(12): 5936-5954. |
[14] | Runxia CAI, Fanxing LI. Tailoring the thermodynamic properties of complex oxides for thermochemical air separation and beyond [J]. CIESC Journal, 2021, 72(12): 6122-6130. |
[15] | LI Guangxiao,LIU Sai'er,SU Yuanhai. Research progress on micro-scale internal liquid-liquid mass transfer and reaction process enhancement [J]. CIESC Journal, 2021, 72(1): 452-467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||