CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 937-944.DOI: 10.11949/0438-1157.20201064
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
WANG Guanqiu(),LIN Guanyi,ZHU Chunying,FU Taotao,MA Youguang()
Received:
2020-07-30
Revised:
2020-09-10
Online:
2021-02-05
Published:
2021-02-05
Contact:
MA Youguang
通讯作者:
马友光
作者简介:
王冠球(1996—),男,硕士研究生,基金资助:
CLC Number:
WANG Guanqiu, LIN Guanyi, ZHU Chunying, FU Taotao, MA Youguang. One-dimensional amplification and gas-liquid mass transfer characteristics of microchannel reactor[J]. CIESC Journal, 2021, 72(2): 937-944.
王冠球, 林冠屹, 朱春英, 付涛涛, 马友光. 微通道反应器的一维放大及气液传质特性[J]. 化工学报, 2021, 72(2): 937-944.
Add to citation manager EndNote|Ris|BibTeX
1 | Sobieszuk P, Aubin J, Pohorecki R. Hydrodynamics and mass transfer in gas-liquid flows in microreactors[J]. Chemical Engineering & Technology, 2012, 35(8): 1346-1358. |
2 | 王彦, 王靖涛. 微流控技术制备聚酰胺微胶囊的工艺研究[J]. 化学工业与工程, 2018, 35(6): 20-25. |
Wang Y, Wang J T. Preparation of polyamide microcapsules based on microfluidics[J]. Chemical Industry and Engineering, 2018, 35(6): 20-25. | |
3 | Zhou Y F, Yao C Q, Zhang P, et al. Dynamic coupling of mass transfer and chemical reaction for Taylor flow along a serpentine microchannel[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 9279-9292. |
4 | Vivekanand S V B, Raju V R K. Effect of wall temperature modulation on the heat transfer characteristics of droplet-train flow inside a rectangular microchannel[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 685-697. |
5 | Ganapathy H, Shooshtari A, Dessiatoun S, et al. Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor[J]. Applied Energy, 2014, 119: 43-56. |
6 | Yue J, Luo L G, Gonthier Y, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708. |
7 | Zhou F, Zhou W, Zhang C Y, et al. Experimental and numerical studies on heat transfer enhancement of microchannel heat exchanger embedded with different shape micropillars[J]. Applied Thermal Engineering, 2020, 175: 115296. |
8 | 荀涛, 蔡旺锋, 张旭斌. 微通道中气-液-液三相流流型及传质研究[J]. 化学工业与工程, 2017, 34(6): 81-87. |
Xun T, Cai W F, Zhang X B. The flow pattern and mass transfer of gas-liquid-liquid three-phase flow in microchannel[J]. Chemical Industry and Engineering, 2017, 34(6): 81-87. | |
9 | Chen G W, Yue J, Yuan Q. Gas-liquid microreaction technology: recent developments and future challenges[J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 663-669. |
10 | Ganapathy H, Steinmayer S, Shooshtari A, et al. Process intensification characteristics of a microreactor absorber for enhanced CO2 capture[J]. Applied Energy, 2016, 162: 416-427. |
11 | Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
12 | Chambers R D, Holling D, Spink R C, et al. Elemental fluorine(13): Gas-liquid thin film microreactors for selective direct fluorination[J]. Lab on a Chip, 2001, 1(2): 132-137. |
13 | de Mas N, Günther A, Schmidt M A, et al. Microfabricated multiphase reactors for the selective direct fluorination of aromatics[J]. Industrial & Engineering Chemistry Research, 2003, 42(4): 698-710. |
14 | Leclerc A, Alamé M, Schweich D, et al. Gas-liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor[J]. Lab on a Chip, 2008, 8(5): 814-817. |
15 | Hessel V, Kralisch D, Kockmann N, et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry[J]. ChemSusChem, 2013, 6(5): 746-789. |
16 | Ye C B, Dang M H, Yao C Q, et al. Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors[J]. Chemical Engineering Journal, 2013, 225: 120-127. |
17 | Chu C Y, Zhang F B, Zhu C Y, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
18 | Sotowa K I, Sugiyama S, Nakagawa K. Flow uniformity in deep microchannel reactor under high throughput conditions[J]. Organic Process Research & Development, 2009, 13(5): 1026-1031. |
19 | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
Chen G W, Zhao Y C, Yue J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75. | |
20 | Zhang J S, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8(1): 285-305. |
21 | Al-Rawashdeh M, Yu F, Nijhuis T A, et al. Numbered-up gas-liquid micro/milli channels reactor with modular flow distributor[J]. Chemical Engineering Journal, 2012, 207/208: 645-655. |
22 | Yue J, Boichot R, Luo L G, et al. Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors[J]. AIChE Journal, 2010, 56(2): 298-317. |
23 | Liu G T, Wang K, Lu Y C, et al. Liquid-liquid microflows and mass transfer performance in slit-like microchannels[J]. Chemical Engineering Journal, 2014, 258: 34-42. |
24 | Ganapathy H, Shooshtari A, Dessiatoun S, et al. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes[J]. Chemical Engineering Journal, 2015, 266: 258-270. |
25 | Niu H N, Pan L W, Su H J, et al. Effects of design and operating parameters on CO2 absorption in microchannel contactors[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8629-8634. |
26 | Nieves-Remacha M J, Kulkarni A A, Jensen K F. Gas-liquid flow and mass transfer in an advanced-flow reactor[J]. Industrial & Engineering Chemistry Research, 2013, 52(26): 8996-9010. |
27 | Akachuku A, Osei P A, Decardi-Nelson B, et al. Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine-methyl-diethanolamine (MEA-MDEA) solutions[J]. Energy, 2019, 179: 475-489. |
28 | 林冠屹, 朱春英, 付涛涛, 等. 微通道内MEA/MDEA混合溶液吸收CO2的传质特性[J]. 化工学报, 2018, 69(11): 4675-4682. |
Lin G Y, Zhu C Y, Fu T T, et al. Mass transfer performance of CO2 absorption into aqueous mixture of monoethanolamine with N-methyldiethanolamine in microchannel[J]. CIESC Journal, 2018, 69(11): 4675-4682. | |
29 | Yao C Q, Dong Z Y, Zhao Y C, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24. |
30 | Zhu C Y, Li C F, Gao X Q, et al. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel[J]. International Journal of Heat and Mass Transfer, 2014, 73: 492-499. |
31 | Musterd M, van Steijn V, Kleijn C R, et al. Calculating the volume of elongated bubbles and droplets in microchannels from a top view image[J]. RSC Advances, 2015, 5(21): 16042-16049. |
32 | Lin G Y, Jiang S, Zhu C Y, et al. Mass-transfer characteristics of CO2 absorption into aqueous solutions of N-methyldiethanolamine + diethanolamine in a T-junction microchannel[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4368-4375. |
33 | Zhu C Y, Lu Y T, Fu T T, et al. Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel[J]. International Journal of Heat and Mass Transfer, 2017, 114: 83-89. |
34 | Penttilä A, Dell'era C, Uusi-Kyyny P, et al. The Henry's law constant of N2O and CO2 in aqueous binary and ternary amine solutions (MEA, DEA, DIPA, MDEA, and AMP)[J]. Fluid Phase Equilibria, 2011, 311: 59-66. |
35 | Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids, 2000, 12(10): 2367. |
36 | Pohorecki R. Effectiveness of interfacial area for mass transfer in two-phase flow in microreactors[J]. Chemical Engineering Science, 2007, 62(22): 6495-6498. |
37 | Yao C Q, Dong Z Y, Zhao Y C, et al. Gas-liquid flow and mass transfer in a microchannel under elevated pressures[J]. Chemical Engineering Science, 2015, 123: 137-145. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[7] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[8] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[9] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[10] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[11] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[12] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[13] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
[14] | Lei WANG, Yong JIANG, Dazhong ZHONG, Jiayuan LI, Genyan HAO, Qiang ZHAO, Jinping LI. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol [J]. CIESC Journal, 2022, 73(8): 3576-3585. |
[15] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||