1 |
Kerney P J. Penetration characteristics of a submerged steam jet [J]. AIChE Journal, 1972, 18(3): 548-553.
|
2 |
Chun M H, Kim Y S, Park J W. An investigation of direct condensation of steam jet in subcooled water [J]. IEEE Electron Device Letters, 1997, 23(9): 547-549.
|
3 |
Kim Y S, Park J W, Song C H. Investigation of the stem-water direct contact condensation heat transfer coefficients using interfacial transport models [J]. International Communications in Heat & Mass Transfer, 2004, 31(3): 397-408.
|
4 |
Wu X Z, Yan J J, Shao S F, et al. Experimental study on the condensation of supersonic steam jet submerged in quiescent subcooled water: steam plume shape and heat transfer [J]. International Journal of Multiphase Flow, 2007, 33(12): 1296-1307.
|
5 |
de With A. Steam plume length diagram for direct contact condensation of steam injected into water [J]. International Journal of Heat and Fluid Flow, 2009, 30(5): 971-982.
|
6 |
Xu Q, Guo L J, Zou S F, et al. Experimental study on direct contact condensation of stable steam jet in water flow in a vertical pipe [J]. International Journal of Heat and Mass Transfer, 2013, 66: 808-817.
|
7 |
刘光耀, 严俊杰, 潘冬冬, 等. 超音速蒸汽射流汽羽形状及压力分布的实验研究[J]. 工程热物理学报, 2010, (5): 781-784.
|
|
Liu G Y, Yan J J, Pan D D, et al. Research on the steam plume shape and pressure fields of supersonic steam jet in subcooled water[J]. Journal of Engineering Thermophysics, 2010, (5): 781-784.
|
8 |
武心壮, 严俊杰, 潘冬冬, 等. 过膨胀超音速蒸汽射流的一种流形及其换热研究[J]. 工程热物理学报, 2010, (12): 2031-2034.
|
|
Wu X Z, Yan J J, Pan D D, et al. Research on flow and heat transfer characteristic of over-expanded supersonic steam jet in water[J]. Journal of Engineering Thermophysics, 2010, (12): 2031-2034.
|
9 |
袁方, 樊鹏飞, 吴林飞, 等. 音速与超音速蒸汽浸没射流穿透长度的研究[J]. 工程热物理学报, 2015, (10): 2169-2172.
|
|
Yuan F, Fan P F, Wu L F, et al. Research on the penetration length of submerged sonic/supersonic steam jet [J]. Journal of Engineering Thermophysics, 2015, (10): 2169-2172.
|
10 |
Choo Y J, Song C. PIV measurements of turbulent jet and pool mixing produced by a steam jet discharge in a subcooled water pool [J]. Nuclear Engineering and Design, 2010, 240(9): 2215-2224.
|
11 |
Dahikar S K, Sathe M J, Joshi J B. Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD [J]. Chemical Engineering Science, 2010, 65(16): 4606-4620.
|
12 |
Dahikar S K, Joshi J B, Shah M S, et al. Experimental and computational fluid dynamic study of reacting gas jet in liquid: flow pattern and heat transfer [J]. Chemical Engineering Science, 2010, 65(2): 827-849.
|
13 |
Gulawani S S, Joshi J B, Shah M S, et al. CFD analysis of flow pattern and heat transfer in direct contact steam condensation [J]. Chemical Engineering Science, 2006, 61(16): 5204-5220.
|
14 |
Gulawani S S, Dahikar S K, Joshi J B, et al. CFD simulation of flow pattern and plume dimensions in submerged condensation and reactive gas jets into a liquid bath [J]. Chemical Engineering Science, 2008, 63(9): 2420-2435.
|
15 |
Patel G, Tanskanen V, Kyrki-Rajamäki R. Numerical modelling of low-Reynolds number direct contact condensation in a suppression pool test facility [J]. Annals of Nuclear Energy, 2014, 71: 376-387.
|
16 |
Li S Q, Wang P, Lu T. Numerical simulation of direct contact condensation of subsonic steam injected in a water pool using VOF method and LES turbulence model [J]. Progress in Nuclear Energy, 2015, 78: 201-215.
|
17 |
Qu X H, Tian M C. Acoustic and visual study on condensation of steam-air mixture jet plume in subcooled water [J]. Chemical Engineering Science, 2016, 144: 216-223.
|
18 |
Qu X H, Sui H, Tian M C. CFD simulation of steam-air jet condensation [J]. Nuclear Engineering and Design, 2016, 297: 44-53.
|
19 |
屈晓航, 田茂诚, 张冠敏, 等. 不凝气体对蒸汽射流冷凝的影响[J]. 化工学报, 2015, 66(10): 3841-3848.
|
|
Qu X H, Tian M C, Zhang G M, et al. Effect of non-condensable gas on steam jet condensation characteristics [J]. CIESC Journal, 2015, 66(10): 3841-3848.
|
20 |
Zhou L, Wang L T, Chong D T, et al. CFD analysis to study the effect of non-condensable gas on stable condensation jet [J]. Progress in Nuclear Energy, 2017, 98: 143-152.
|