CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2912-2923.DOI: 10.11949/0438-1157.20220076
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yafei LI1,2(),Jianqiang DENG1,2(),Yang HE1,2
Received:
2022-01-14
Revised:
2022-05-19
Online:
2022-08-01
Published:
2022-07-05
Contact:
Jianqiang DENG
通讯作者:
邓建强
作者简介:
李亚飞(1994—),男,博士研究生,基金资助:
CLC Number:
Yafei LI, Jianqiang DENG, Yang HE. Numerical study on non-equilibrium condensation and flashing mechanisms in rapid expansion process of transcritical CO2[J]. CIESC Journal, 2022, 73(7): 2912-2923.
李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
进口压力pin/MPa | 进口温度Tin/K | 出口压力pout/MPa |
---|---|---|
9.5 | 323.55 | 4.06 |
Table 1 Inlet and outlet conditions of nozzle
进口压力pin/MPa | 进口温度Tin/K | 出口压力pout/MPa |
---|---|---|
9.5 | 323.55 | 4.06 |
几何参数 | 数值 | 几何参数 | 数值 |
---|---|---|---|
γ1 | 29.59o | Lmix | 38.00 mm |
γ2 | 71.47o | Wmix | 2.82 mm |
γ3 | 88.19o | Ld1 | 30.50 mm |
γnc | 23.73o | Ld2 | 24.00 mm |
Wn | 8.00 mm | Wd | 10.00 mm |
Ws | 8.00 mm | γd | 13.43o |
Ls | 26.55 mm | Hn | 0.78 mm |
NXP | 8.40 mm | Hmix | 1.78 mm |
NDA | 2.00o |
Table 2 Geometric parameters of CO2 ejector
几何参数 | 数值 | 几何参数 | 数值 |
---|---|---|---|
γ1 | 29.59o | Lmix | 38.00 mm |
γ2 | 71.47o | Wmix | 2.82 mm |
γ3 | 88.19o | Ld1 | 30.50 mm |
γnc | 23.73o | Ld2 | 24.00 mm |
Wn | 8.00 mm | Wd | 10.00 mm |
Ws | 8.00 mm | γd | 13.43o |
Ls | 26.55 mm | Hn | 0.78 mm |
NXP | 8.40 mm | Hmix | 1.78 mm |
NDA | 2.00o |
算例编号 | 主动流压力 pp/MPa | 主动流温度 Tp/K | 引射流压力 ps/MPa | 引射流温度 Ts/K | 引射器出口压力 peo/MPa |
---|---|---|---|---|---|
A1 | 9.50 | 306.59 | 3.73 | 297.17 | 3.80 |
A2 | 9.00 | 304.92 | 2.99 | 299.53 | 3.10 |
A3 | 8.49 | 303.17 | 3.04 | 299.47 | 3.13 |
Table 3 Inlet and outlet operating conditions of CO2 ejector
算例编号 | 主动流压力 pp/MPa | 主动流温度 Tp/K | 引射流压力 ps/MPa | 引射流温度 Ts/K | 引射器出口压力 peo/MPa |
---|---|---|---|---|---|
A1 | 9.50 | 306.59 | 3.73 | 297.17 | 3.80 |
A2 | 9.00 | 304.92 | 2.99 | 299.53 | 3.10 |
A3 | 8.49 | 303.17 | 3.04 | 299.47 | 3.13 |
算例编号 | 主动流流量试验值mp,exp/(g/s) | 引射流流量试验值ms,exp/(g/s) | 主动流流量模拟值mp,num/(g/s) | 引射流流量模拟值ms,num/(g/s) | 主动流流量 误差/% | 引射流流量 误差/% |
---|---|---|---|---|---|---|
A1 | 19.25 | 10.70 | 17.05 | 10.96 | -11.43 | 2.43 |
A2 | 15.55 | 6.60 | 16.03 | 6.92 | 3.09 | 4.85 |
A3 | 14.67 | 6.21 | 15.06 | 6.75 | 2.66 | 8.70 |
Table 4 Comparison of mass flow rates obtained by CFD simulation and experimental results
算例编号 | 主动流流量试验值mp,exp/(g/s) | 引射流流量试验值ms,exp/(g/s) | 主动流流量模拟值mp,num/(g/s) | 引射流流量模拟值ms,num/(g/s) | 主动流流量 误差/% | 引射流流量 误差/% |
---|---|---|---|---|---|---|
A1 | 19.25 | 10.70 | 17.05 | 10.96 | -11.43 | 2.43 |
A2 | 15.55 | 6.60 | 16.03 | 6.92 | 3.09 | 4.85 |
A3 | 14.67 | 6.21 | 15.06 | 6.75 | 2.66 | 8.70 |
1 | Bansal P. A review—status of CO2 as a low temperature refrigerant: fundamentals and R&D opportunities[J]. Applied Thermal Engineering, 2012, 41: 18-29. |
2 | Chen M C, Zhao R K, Zhao L, et al. Supercritical CO2 Brayton cycle: intelligent construction method and case study[J]. Energy Conversion and Management, 2021, 246: 114662. |
3 | Liu Z Y, Wang P, Sun X Y, et al. Analysis on thermodynamic and economic performances of supercritical carbon dioxide Brayton cycle with the dynamic component models and constraint conditions[J]. Energy, 2022, 240: 122792. |
4 | Ming Y, Liu K, Zhao F L, et al. Dynamic modeling and validation of the 5 MW small modular supercritical CO2 Brayton-Cycle reactor system[J]. Energy Conversion and Management, 2022, 253: 115184. |
5 | Yang Y P, Huang Y L, Jiang P X, et al. Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle[J]. Applied Energy, 2020, 271: 115189. |
6 | Ahammed M E, Bhattacharyya S, Ramgopal M. Thermodynamic design and simulation of a CO2 based transcritical vapour compression refrigeration system with an ejector[J]. International Journal of Refrigeration, 2014, 45: 177-188. |
7 | Zou H M, Yang T Y, Tang M S, et al. Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors[J]. Energy, 2022, 239: 122452. |
8 | Zhu Y H, Li C H, Zhang F Z, et al. Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system[J]. Energy Conversion and Management, 2017, 151: 98-106. |
9 | Gullo P, Birkelund M, Kriezi E E, et al. Novel flow modulation method for R744 two-phase ejectors—proof of concept, optimization and first experimental results[J]. Energy Conversion and Management, 2021, 237: 114082. |
10 | Benintendi R. Non-equilibrium phenomena in carbon dioxide expansion[J]. Process Safety and Environmental Protection, 2014, 92(1): 47-59. |
11 | 马一太, 管海清, 曾宪阳. 超临界CO2迅速降压过程的亚稳成核机理研究[J]. 工程热物理学报, 2006, 27(2): 208-210. |
Ma Y T, Guan H Q, Zeng X Y. Research on metastable characteristics and nucleation mechanism in the rapid depression process of supercritical CO2 fluid[J]. Journal of Engineering Thermophysics, 2006, 27(2): 208-210. | |
12 | Romei A, Persico G. Computational fluid-dynamic modelling of two-phase compressible flows of carbon dioxide in supercritical conditions[J]. Applied Thermal Engineering, 2021, 190: 116816. |
13 | Deng Q H, Jiang Y, Hu Z F, et al. Condensation and expansion characteristics of water steam and carbon dioxide in a Laval nozzle[J]. Energy, 2019, 175: 694-703. |
14 | Sun W J, Cao X W, Yang W, et al. Numerical simulation of CO2 condensation process from CH4-CO2 binary gas mixture in supersonic nozzles[J]. Separation and Purification Technology, 2017, 188: 238-249. |
15 | Bian J, Jiang W M, Hou D Y, et al. Condensation characteristics of CH4-CO2 mixture gas in a supersonic nozzle[J]. Powder Technology, 2018, 329: 1-11. |
16 | Chen J N, Jiang W M, Han C Y, et al. Study on supersonic swirling condensation characteristics of CO2 in Laval nozzle[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103672. |
17 | Chen J N, Jiang W M, Han C Y, et al. Numerical study on the influence of supersonic nozzle structure on the swirling condensation characteristics of CO2 [J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103753. |
18 | Hou D Y, Jiang W M, Zhao W X, et al. Effect of linetype of convergent section on supersonic condensation characteristics of CH4-CO2 mixture gas in Laval nozzle[J]. Chemical Engineering and Processing - Process Intensification, 2018, 133: 128-136. |
19 | Li Y F, Deng J Q, Ma L. Experimental study on the primary flow expansion characteristics in transcritical CO2 two-phase ejectors with different primary nozzle diverging angles[J]. Energy, 2019, 186: 115839. |
20 | Li Y F, Deng J Q, Ma L, et al. Visualization of two-phase flow in primary nozzle of a transcritical CO2 ejector[J]. Energy Conversion and Management, 2018, 171: 729-741. |
21 | Yazdani M, Alahyari A A, Radcliff T D. Numerical modeling of two-phase supersonic ejectors for work-recovery applications[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5744-5753. |
22 | Giacomelli F, Mazzelli F, Banasiak K, et al. Experimental and computational analysis of a R744 flashing ejector[J]. International Journal of Refrigeration, 2019, 107: 326-343. |
23 | Giacomelli F, Mazzelli F, Milazzo A. A novel CFD approach for the computation of R744 flashing nozzles in compressible and metastable conditions[J]. Energy, 2018, 162: 1092-1105. |
24 | Lee W H. A pressure iteration scheme for two-phase flow modeling[M]//Veziroglu T N. Multiphase Transport: Fundamentals Reactor Safety, Applications. Washington D.C., USA: Hemisphere Publishing, 1980: 407-431. |
25 | Smolka J, Bulinski Z, Fic A, et al. A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach[J]. Applied Mathematical Modelling, 2013, 37(3): 1208-1224. |
26 | Bodys J, Smolka J, Palacz M, et al. Non-equilibrium approach for the simulation of CO2 expansion in two-phase ejector driven by subcritical motive pressure[J]. International Journal of Refrigeration, 2020, 114: 32-46. |
27 | Liao Y X, Lucas D. Computational modelling of flash boiling flows: a literature survey[J]. International Journal of Heat and Mass Transfer, 2017, 111: 246-265. |
28 | Zwart P J, Gerber A G, Belamri T. A two-phase flow model for predicting cavitation dynamics[C]//. Proc. ICMF 2004 International Conference on Multiphase Flow. Yokohama, Japan, 2004: 1-11. |
29 | Brennen C E. Fundamentals of Multiphase Flow[M]. Cambridge: Cambridge University Press, 2005: 227-231. |
30 | Lemmon E, Huber M L, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP Version 8.0[EB/OL]. Gaithersburg, USA: National Institute of Standards and Technology, 2007[2022-05-15]. . |
31 | Baek S, Ko S, Song S, et al. Numerical study of high-speed two-phase ejector performance with R134a refrigerant[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1071-1082. |
32 | Berana M S, Nakagawa M, Harada A. Shock waves in supersonic two-phase flow of CO2 in converging-diverging nozzles[J]. HVAC&R Research, 2009, 15(6): 1081-1098. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[5] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[6] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[7] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[8] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[11] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[12] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[15] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 387
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||