CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2773-2782.DOI: 10.11949/0438-1157.20201481

• Energy and environmental engineering • Previous Articles     Next Articles

Study on the calorific value prediction of municipal solid wastes by image deep learning

XIE Haoyuan(),HUANG Qunxing,LIN Xiaoqing(),LI Xiaodong,YAN Jianhua   

  1. Polytechnic Institute, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2020-10-26 Revised:2020-12-05 Online:2021-05-05 Published:2021-05-05
  • Contact: LIN Xiaoqing

基于图像深度学习的垃圾热值预测研究

谢昊源(),黄群星,林晓青(),李晓东,严建华   

  1. 浙江大学工程师学院,浙江大学热能工程研究所,浙江 杭州 310027
  • 通讯作者: 林晓青
  • 作者简介:谢昊源(1998—),男,硕士研究生,xhy_2020@zju.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFC1910100)

Abstract:

Waste incineration power plants have large fluctuations in the calorific value of waste entering the furnace, which affects the stability of boiler operation and power generation efficiency. The use of image deep learning methods to achieve real-time prediction of the heat value of waste entering the furnace will help the power plant achieve "advanced regulation". Currently, there is lack of waste image database coinciding with waste composition in China after reviewing researches of image recognition and calorific value prediction progress of waste. Yolov5 is adopted for waste image detection and calorific value prediction. Furthermore, industrial cameras are used to real time capture images of waste before entering the furnace, and the image database of waste would be built by waste classifying annotation. Following this, we envisage a calorific value prediction model based on the obtained data being trained through using mosaic enhancement and neural network. In the future, it is meaningful to combine deep image learning with image recognition technology for waste calorific value prediction, which will be higher precision and faster response time.

Key words: municipal solid waste incineration, calorific value, neural networks, image deep learning, algorithm

摘要:

垃圾焚烧发电厂入炉垃圾热值波动大,影响了锅炉运行的稳定性和发电效率,利用图像深度学习的方法实现入炉垃圾热值的实时预测,有助于电厂实现“超前调控”。本文探讨了国内外垃圾图像识别及热值预测的研究进展和不足,认为目前缺少符合我国垃圾组分结构的垃圾图像数据库和热值智能预测方法,提出了用Yolov5识别图像中垃圾种类来预测热值的方法,通过入炉垃圾图像的实时采集与分类标记建立图像数据库,并耦合mosaic数据增强等图像数据处理及神经网络训练,提出建立垃圾热值实时预测模型的设想。本文进一步展望了垃圾热值智能预测的发展前景,未来可以将深度学习与图像识别技术高效结合,实现入炉垃圾热值的实时与精准预测。

关键词: 垃圾焚烧, 热值, 神经网络, 图像深度学习, 算法

CLC Number: