CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4111-4120.DOI: 10.11949/0438-1157.20201677
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hailiang CAO(),Hongfei ZHANG,Qianlong ZUO,Qi AN,Ziyang ZHANG,Hongbei LIU
Received:
2020-11-23
Revised:
2021-02-09
Online:
2021-08-05
Published:
2021-08-05
Contact:
Hailiang CAO
通讯作者:
曹海亮
作者简介:
曹海亮(1976—),男,博士,副教授,基金资助:
CLC Number:
Hailiang CAO, Hongfei ZHANG, Qianlong ZUO, Qi AN, Ziyang ZHANG, Hongbei LIU. Study on pool boiling heat transfer performance of trapezoidal microchannel surface[J]. CIESC Journal, 2021, 72(8): 4111-4120.
曹海亮, 张红飞, 左潜龙, 安琪, 张子阳, 刘红贝. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120.
Add to citation manager EndNote|Ris|BibTeX
序号 | 开口宽度W/mm | 槽道深度H/mm | 肋底宽度E/mm | 下底长度D/mm | 下底角角度φ/(°) | 槽道数目/条 |
---|---|---|---|---|---|---|
D1.2-45-6 | 0.4 | 1.0 | 1.0 | 1.2 | 45 | 6 |
D1.2-55-6 | 0.4 | 1.0 | 1.0 | 1.2 | 55 | 6 |
D1.2-65-6 | 0.4 | 1.0 | 1.0 | 1.2 | 65 | 6 |
D1.0-45-7 | 0.4 | 1.0 | 1.0 | 1.0 | 45 | 7 |
D1.0-55-7 | 0.4 | 1.0 | 1.0 | 1.0 | 55 | 7 |
D1.0-65-7 | 0.4 | 1.0 | 1.0 | 1.0 | 65 | 7 |
D0.8-45-7 | 0.4 | 1.0 | 1.0 | 0.8 | 45 | 7 |
D0.8-55-7 | 0.4 | 1.0 | 1.0 | 0.8 | 55 | 7 |
D0.8-65-7 | 0.4 | 1.0 | 1.0 | 0.8 | 65 | 7 |
Table 1 Structural dimensions of microchannel surfaces
序号 | 开口宽度W/mm | 槽道深度H/mm | 肋底宽度E/mm | 下底长度D/mm | 下底角角度φ/(°) | 槽道数目/条 |
---|---|---|---|---|---|---|
D1.2-45-6 | 0.4 | 1.0 | 1.0 | 1.2 | 45 | 6 |
D1.2-55-6 | 0.4 | 1.0 | 1.0 | 1.2 | 55 | 6 |
D1.2-65-6 | 0.4 | 1.0 | 1.0 | 1.2 | 65 | 6 |
D1.0-45-7 | 0.4 | 1.0 | 1.0 | 1.0 | 45 | 7 |
D1.0-55-7 | 0.4 | 1.0 | 1.0 | 1.0 | 55 | 7 |
D1.0-65-7 | 0.4 | 1.0 | 1.0 | 1.0 | 65 | 7 |
D0.8-45-7 | 0.4 | 1.0 | 1.0 | 0.8 | 45 | 7 |
D0.8-55-7 | 0.4 | 1.0 | 1.0 | 0.8 | 55 | 7 |
D0.8-65-7 | 0.4 | 1.0 | 1.0 | 0.8 | 65 | 7 |
1 | Bombardieri C, Manfletti C. Influence of wall material on nucleate pool boiling of liquid nitrogen[J]. International Journal of Heat and Mass Transfer, 2016, 94: 1-8. |
2 | 徐治国, 赵长颖. 低孔密度泡沫金属的材质和厚度对池沸腾传热性能的影响[J]. 热科学与技术, 2013, 12(4): 295-301. |
Xu Z G, Zhao C Y. Material effect on pool boiling heat transfer of open-celled metal foams with low pore density[J]. Journal of Thermal Science and Technology, 2013, 12(4): 295-301. | |
3 | Zupančič M, Steinbücher M, Gregorčič P, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces[J]. Applied Thermal Engineering, 2015, 91: 288-297. |
4 | Ma X J, Cheng P. Dry spot dynamics and wet area fractions in pool boiling on micro-pillar and micro-cavity hydrophilic heaters: a 3D lattice Boltzmann phase-change study[J]. International Journal of Heat and Mass Transfer, 2019, 141: 407-418. |
5 | Kim D E, Yu D I, Jerng D W, et al. Review of boiling heat transfer enhancement on micro/nanostructured surfaces[J]. Experimental Thermal and Fluid Science, 2015, 66: 173-196. |
6 | Shoji M, Takagi Y. Bubbling features from a single artificial cavity[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2763-2776. |
7 | Chen Y M, Groll M, Mertz R, et al. Pool boiling heat transfer of propane, isobutane and their mixtures on enhanced tubes with reentrant channels[J]. International Journal of Heat and Mass Transfer, 2005, 48(11): 2310-2322. |
8 | Raza M Q, Kumar N, Raj R. Experimental characterization and modeling of critical heat flux with subcooled foaming solution[J]. International Journal of Thermal Sciences, 2019, 141: 199-210. |
9 | Etedali S, Afrand M, Abdollahi A. Effect of different surfactants on the pool boiling heat transfer of SiO2/deionized water nanofluid on a copper surface[J]. International Journal of Thermal Sciences, 2019, 145: 105977. |
10 | Dahariya S, Betz A R. High pressure pool boiling: mechanisms for heat transfer enhancement and comparison to existing models[J]. International Journal of Heat and Mass Transfer, 2019, 141: 696-706. |
11 | 吴静波. 低压下浓盐水沸腾及强化传热的实验研究[D]. 大连: 大连理工大学, 2009. |
Wu J B. Experimental research in boiling heat transfer and enhancement of high concentrated brine at low pressure[D]. Dalian: Dalian University of Technology, 2009. | |
12 | 张永海, 薛艳芳, 魏进家, 等. 微重力下微结构表面池沸腾气泡动力学研究[J]. 工程热物理学报, 2013, 34(11): 2112-2115. |
Zhang Y H, Xue Y F, Wei J J, et al. Pool boiling heat transfer and bubble dynamics over micro-pin-finned surface under microgravity[J]. Journal of Engineering Thermophysics, 2013, 34(11): 2112-2115. | |
13 | Das A K, Das P K, Saha P. Performance of different structured surfaces in nucleate pool boiling[J]. Applied Thermal Engineering, 2009, 29(17/18): 3643-3653. |
14 | Liang G T, Mudawar I. Review of pool boiling enhancement by surface modification[J]. International Journal of Heat and Mass Transfer, 2019, 128: 892-933. |
15 | Yu C K, Lu D C. Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72[J]. International Journal of Heat and Mass Transfer, 2007, 50(17/18): 3624-3637. |
16 | Cooke D, Kandlikar S G. Effect of open microchannel geometry on pool boiling enhancement[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1004-1013. |
17 | 端震, 赵孝保, 董庆. 垂直矩形微槽群内部相变换热的实验研究[J]. 南京师范大学学报(工程技术版), 2008, 8(2): 32-35. |
Duan Z, Zhao X B, Dong Q. Experimental study on the phase-change heat transfer in vertically rectangular micro-capillary grooves[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2008, 8(2): 32-35. | |
18 | 周述璋, 王焰新, 侯亭波, 等. 多孔微槽道复合结构的强化沸腾传热性能[J]. 华南理工大学学报(自然科学版), 2014, 42(7): 110-116. |
Zhou S Z, Wang Y X, Hou T B, et al. Enhanced boiling heat-transfer performance of porous microchannel composite structure[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(7): 110-116. | |
19 | Zhou P, Liu Z C, Liu W, et al. LBM simulates the effect of sole nucleate site geometry on pool boiling[J]. Applied Thermal Engineering, 2019, 160: 114027. |
20 | Das A K, Das P K, Saha P. Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1422-1431. |
21 | Jaikumar A, Kandlikar S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 88: 652-661. |
22 | Deng D X, Wan W, Feng J Y, et al. Comparative experimental study on pool boiling performance of porous coating and solid structures with reentrant channels[J]. Applied Thermal Engineering, 2016, 107: 420-430. |
23 | Ha M, Graham S. Pool boiling enhancement using vapor channels in microporous surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118532. |
24 | 周儒鸿, 纪献兵, 孔庆盼, 等. 表面润湿性影响池沸腾传热的研究进展[J]. 热能动力工程, 2019, 34(2): 1-8. |
Zhou R H, Ji X B, Kong Q P, et al. Research progress of pool boiling heat transferon different wettability surfaces[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 1-8. | |
25 | Betz A R, Jenkins J, Kim C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741. |
26 | Deng D X, Feng J Y, Huang Q S, et al. Pool boiling heat transfer of porous structures with reentrant cavities[J]. International Journal of Heat and Mass Transfer, 2016, 99: 556-568. |
27 | 郑晓欢. 多尺度与改性结构表面的沸腾传热特性研究[D]. 北京: 华北电力大学, 2017. |
Zheng X H. Study on boiling heat transfer characteristics of multi-scale and modified structural surface [D]. Beijing: North China Electric Power University, 2017. | |
28 | Li C H, Li T, Hodgins P, et al. Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3146-3155. |
29 | 李兰兰. 微纳米结构表面沸腾换热的实验研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2013. |
Li L L. Experimental study of pool boiling on micro and nano-structured surfaces[D]. Beijing: Graduate University of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2013. | |
30 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 320-327. |
Yang S M, Tao W Q. Heat Transfer[M]. Beijing: Higher Education Press, 2006: 320-327. | |
31 | Jaikumar A, Kandlikar S G. Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 95: 795-805. |
32 | 张楠. 微细通道多孔介质复合沸腾换热研究[D]. 郑州: 郑州大学, 2018. |
Zhang N. Experimental investigation of pool boiling heat transfer characteristics on microchannel with porous medium composite structure[D]. Zhengzhou: Zhengzhou University, 2018. | |
33 | 王现宝. 多尺度仿生交错润湿性表面沸腾传热性能及机理[D]. 长春: 吉林大学, 2015. |
Wang X B. Boiling heat transfer performance and mechanism of biomimetic multi-scale interlaced wettability surface[D]. Changchun: Jilin University, 2015. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[15] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||