CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3435-3444.DOI: 10.11949/0438-1157.20210070
• Reviews and monographs • Previous Articles Next Articles
CHU Guangwen1(),LIAO Honggang2,WANG Dan1,LI Hui3,LI Sa4,JIANG Hong5,JIN Wanqin5,CHEN Jianfeng1
Received:
2021-01-20
Revised:
2021-03-17
Online:
2021-07-05
Published:
2021-07-05
Contact:
CHU Guangwen
初广文1(),廖洪钢2,王丹1,李晖3,李洒4,姜红5,金万勤5,陈建峰1
通讯作者:
初广文
作者简介:
初广文(1974—),男,博士,教授,基金资助:
CLC Number:
CHU Guangwen,LIAO Honggang,WANG Dan,LI Hui,LI Sa,JIANG Hong,JIN Wanqin,CHEN Jianfeng. Gas-liquid reaction process intensification at micro-/nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444.
初广文,廖洪钢,王丹,李晖,李洒,姜红,金万勤,陈建峰. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444.
Add to citation manager EndNote|Ris|BibTeX
1 | Li J H, Zhang J Y, Ge W, et al. Multi-scale methodology for complex systems[J]. Chemical Engineering Science, 2004, 59(8/9): 1687-1700. |
2 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica (Chimica), 2014, 44(3): 277-281. | |
3 | Li J H. Approaching virtual process engineering with exploring mesoscience[J]. Chemical Engineering Journal, 2015, 278: 541-555. |
4 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
Sun H W, Chen J F. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
5 | Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
6 | 邢卫红, 汪勇, 陈日志, 等. 膜与膜反应器: 现状、挑战与机遇[J]. 中国科学: 化学, 2014, 44(9): 1469-1481. |
Xing W H, Wang Y, Chen R Z, et al. Membranes and membrane reactors: state of the art, challenges, and opportunities[J]. Scientia Sinica(Chimica), 2014, 44(9): 1469-1481. | |
7 | 徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展[J]. 中国工程科学, 2014, 16(12): 4-9. |
Xu N P, Gao C J, Jin W Q. Innovations of membrane science and technology in China[J]. Engineering Sciences, 2014, 16(12): 4-9. | |
8 | Guo K, Guo F, Feng Y D, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55(9): 1699-1706. |
9 | Sang L, Luo Y, Chu G W, et al. Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: a visual study[J]. Chemical Engineering Science, 2017, 158: 429-438. |
10 | Xu Y C, Li Y B, Liu Y Z, et al. Liquid jet impaction on the single-layer stainless steel wire mesh in a rotating packed bed reactor[J]. AIChE Journal, 2019, 65(6): e16597. |
11 | Wu W, Luo Y, Chu G W, et al. Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing[J]. Chemical Engineering Journal, 2020, 386: 121537. |
12 | Shi X, Xiang Y, Wen L X, et al. CFD analysis of liquid phase flow in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2013, 228: 1040-1049. |
13 | Ouyang Y, Zou H K, Gao X Y, et al. Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed[J]. Chemical Engineering and Processing: Process Intensification, 2018, 123: 185-194. |
14 | Guo T Y, Shi X, Chu G W, et al. Computational fluid dynamics analysis of the micromixing efficiency in a rotating-packed-bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4856-4866. |
15 | Liu Y, Wu W, Luo Y, et al. CFD simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
16 | Li W L, Gao X Y, Ouyang Y, et al. CFD analysis of gas flow characteristics and residence time distribution in a rotating spherical packing bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21717-21729. |
17 | Wu W, Luo Y, Chu G W, et al. Gas flow in a multiliquid-inlet rotating packed bed: three-dimensional numerical simulation and internal optimization[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2031-2040. |
18 | Yang H J, Chu G W, Zhang J W, et al. Micromixing efficiency in a rotating packed bed: experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7730-7737. |
19 | Yang H J, Chu G W, Xiang Y, et al. Characterization of micromixing efficiency in rotating packed beds by chemical methods[J]. Chemical Engineering Journal, 2006, 121(2/3): 147-152. |
20 | Chu G W, Song Y H, Yang H J, et al. Micromixing efficiency of a novel rotor-stator reactor[J]. Chemical Engineering Journal, 2007, 128(2/3): 191-196. |
21 | Guo F, Zheng C, Guo K, et al. Hydrodynamics and mass transfer in cross-flow rotating packed bed[J]. Chemical Engineering Science, 1997, 52(21/22): 3853-3859. |
22 | Luo Y, Chu G W, Zou H K, et al. Mass transfer studies in a rotating packed bed with novel rotors: chemisorption of CO2[J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 9164-9172. |
23 | Yi F, Zou H K, Chu G W, et al. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed[J]. Chemical Engineering Journal, 2009, 145(3): 377-384. |
24 | Sang L, Luo Y, Chu G W, et al. Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed[J]. Chemical Engineering Science, 2017, 170: 355-364. |
25 | Yang Y C, Xiang Y, Chu G W, et al. CFD modeling of gas-liquid mass transfer process in a rotating packed bed[J]. Chemical Engineering Journal, 2016, 294: 111-121. |
26 | Xie P, Lu X S, Yang X, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
27 | Xie P, Lu X S, Ding H B, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
28 | Chu G W, Song Y J, Zhang W J, et al. Micromixing efficiency enhancement in a rotating packed bed reactor with surface-modified nickel foam packing[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1697-1702. |
29 | Zheng X H, Chu G W, Kong D J, et al. Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing[J]. Chemical Engineering Journal, 2016, 285: 236-242. |
30 | Westermann T, Melin T. Flow-through catalytic membrane reactors—principles and applications[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 17-28. |
31 | Liao Y X, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chemical Engineering Science, 2010, 65(10): 2851-2864. |
32 | Hohl L, Panckow R P, Schulz J M, et al. Description of disperse multiphase processes: quo vadis?[J]. Chemie Ingenieur Technik, 2018, 90(11): 1709-1726. |
33 | Hou M M, Jiang H, Liu Y F, et al. Membrane based gas-liquid dispersion integrated in fixed-bed reactor: a highly efficient technology for heterogeneous catalysis[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 158-168. |
34 | Zheng C, Tan J, Wang K, et al. Stability and pressure drop of gas-liquid micro-dispersion flows through a capillary[J]. Chemical Engineering Science, 2016, 140: 134-143. |
35 | Dong X L, Jin W Q, Xu N P, et al. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications[J]. Chemical Communications, 2011, 47(39): 10886-10902. |
36 | Liu Y F, Han Y, Li X L, et al. Efficient control of microbubble properties by alcohol shear flows in ceramic membrane channels[J]. Chemical Engineering & Technology, 2018, 41(1): 168-174. |
37 | Liu Y F, Han Y, Li X L, et al. Controlling microbubbles in alcohol solutions by using a multi-channel ceramic membrane distributor[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2456-2463. |
38 | Han Y, Liu Y F, Jiang H, et al. Large scale preparation of microbubbles by multi-channel ceramic membranes: Hydrodynamics and mass transfer characteristics[J]. The Canadian Journal of Chemical Engineering, 2017, 95(11): 2176-2185. |
39 | Trushin A M, Dmitriev E A, Akimov V V. Mechanics of the formation of microbubbles in gas dispersion through the pores of microfiltration membranes[J]. Theoretical Foundations of Chemical Engineering, 2011, 45(1): 26-32. |
40 | Li X L, Liu Y F, Jiang H, et al. Computational fluid dynamics simulation of a novel membrane distributor of bubble columns for generating microbubbles[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 1087-1094. |
41 | Liao H G, Cui L, Whitelam S, et al. Real-time imaging of Pt3Fe nanorod growth in solution[J]. Science, 2012, 336(6084): 1011-1014. |
42 | Liao H G, Niu K Y, Zheng H M. Observation of growth of metal nanoparticles[J]. Chemical Communications, 2013, 49(100): 11720-11727. |
43 | Ewing G E. Ambient thin film water on insulator surfaces[J]. Chemical Reviews, 2006, 106: 1511-1526. |
44 | Li J H, Huang W L, Chen J H, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335. |
45 | Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces[J]. Nature Materials, 2012, 11(8): 667-674. |
46 | Cicero G, Grossman J C, Catellani A, et al. Water at a hydrophilic solid surface probed by ab initio molecular dynamics: inhomogeneous thin layers of dense fluid[J]. Journal of the American Chemical Society, 2005, 127(18): 6830-6835. |
47 | Huang P, Pham T A, Galli G, et al. Alumina(0001)/water interface: structural properties and infrared spectra from first-principles molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2014, 118(17): 8944-8951. |
48 | Ferri M, Elliott J D, Camellone M F, et al. CuFeO2-water interface under illumination: structural, electronic, and catalytic implications for the hydrogen evolution reaction[J]. ACS Catalysis, 2021, 11(4): 1897-1910. |
49 | Calzolari A, Ruini A, Catellani A. Surface effects on catechol/semiconductor interfaces[J]. The Journal of Physical Chemistry C, 2012, 116(32): 17158-17163. |
50 | Cicero G, Grossman J C, Schwegler E, et al. Water confined in nanotubes and between graphene sheets: a first principle study[J]. Journal of the American Chemical Society, 2008, 130(6): 1871-1878. |
51 | Liao H G, Zherebetskyy D, Xin H, et al. Facet development during platinum nanocube growth[J]. Science, 2014, 345(6199): 916-919. |
52 | Huang J Y, Lo Y C, Niu J J, et al. Nanowire liquid pumps[J]. Nature Nanotechnology, 2013, 8(4): 277-281. |
53 | Guan B Y, Kushima A, Yu L, et al. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors[J]. Advanced Materials, 2017, 29(17): 1605902. |
54 | Yang Y, Kushima A, Han W Z, et al. Liquid-like, self-healing aluminum oxide during deformation at room temperature[J]. Nano Letters, 2018, 18(4): 2492-2497. |
55 | Pu Y, Kang F, Zeng X F, et al. Synthesis of transparent oil dispersion of monodispersed calcium carbonate nanoparticles with high concentration[J]. AIChE Journal, 2017, 63(9): 3663-3669. |
56 | Pu Y, Cai F H, Wang D, et al. Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1790-1802. |
57 | Xia Y, Zhang C, Wang J X, et al. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film[J]. Langmuir, 2018, 34(23): 6806-6813. |
58 | Li H, Zeng X C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets[J]. ACS Nano, 2012, 6(3): 2401-2409. |
59 | Zhu C, Li H, Huang Y, et al. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant[J]. Physical Review Letters, 2013, 110(12): 126101. |
60 | Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
61 | Zhang X, Zhou W, Xu F, et al. Resistance of water transport in carbon nanotube membranes[J]. Nanoscale, 2018, 10(27): 13242-13249. |
62 | Zhang J P, Luo Y, Chu G W, et al. A hydrophobic wire mesh for better liquid dispersion in air[J]. Chemical Engineering Science, 2017, 170: 204-212. |
63 | Su M J, Le Y, Chu G W, et al. Intensification of droplet dispersion by using multilayer wire mesh and its application in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3584-3592. |
64 | 陈建峰, 初广文, 邹海魁, 等. 一种低压降纳微结构化填料旋转床超重力装置及应用: 102120172B[P]. 2012-10-17. |
Chen J F, Chu G W, Zou H K, et al. Low-pressure-drop nano/microstructure filler revolving bed supergravity device and application thereof: 102120172B[P]. 2012-10-17. | |
65 | 陈建峰, 罗勇, 初广文, 等. 一种分段进液强化转子端效应的超重力旋转床装置: 102258880B[P]. 2013-05-29. |
Chen J F, Luo Y, Chu G W, et al. A high gravity rotating bed device with segment-fed liquid to strengthen rotor end effect: 102258880B[P]. 2013-05-29. | |
66 | Li X L, Jiang H, Hou M M, et al. Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion[J]. Chemical Engineering Journal, 2020, 386: 120744. |
67 | Chen R Z, Mao H L, Zhang X R, et al. A dual-membrane airlift reactor for cyclohexanone ammoximation over titanium silicalite-1[J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6372-6379. |
68 | Chen R Z, Bao Y H, Xing W H, et al. Enhanced phenol hydroxylation with oxygen using a ceramic membrane distributor[J]. Chinese Journal of Catalysis, 2013, 34(1): 200-208. |
69 | 陈日志, 姜红, 刘宇程, 等. 一种苯酚液相加氢制环己酮的生产工艺: 109180455A[P]. 2019-01-11. |
Chen R Z, Jiang H, Liu Y C, et al. Production technology for preparing cyclohexanone by liquid phase hydrogenation of phenol: 109180455A[P]. 2019-01-11. | |
70 | 陈日志, 侯苗苗, 姜红, 等. 一种甘油氢解制1,2-丙二醇的生产工艺: 107628929B[P]. 2018-01-26. |
Chen R Z, Hou M M, Jiang H, et al. Process for producing1, 2-propanediol through hydrogenolysis of glycerol: 107628929B[P]. 2018-01-26. | |
71 | 邢卫红, 毛红淋, 陈日志, 等. 一种基于膜分布的无溶剂绿色氨肟化工艺: 104860842B[P]. 2015-08-26. |
Xing W H, Mao H L, Chen R Z, et al. Solvent-free green ammoximation technology based on film distribution: 104860842B[P]. 2015-08-26. | |
72 | 徐南平, 金万勤, 李朝辉, 等. 一种管式膜反应器: 101574636B[P]. 2009-11-11. |
Xu N P, Jin W Q, Li C H, et al. Tubular membrane reactor: 101574636B[P]. 2009-11-11. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[6] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[7] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[8] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[9] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[10] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[11] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[12] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[13] | Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498. |
[14] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[15] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||