CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3513-3521.DOI: 10.11949/0438-1157.20230595
• Energy and environmental engineering • Previous Articles Next Articles
Yali HU(), Junyong HU(), Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG
Received:
2023-06-19
Revised:
2023-08-21
Online:
2023-10-18
Published:
2023-08-25
Contact:
Junyong HU
胡亚丽(), 胡军勇(), 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源
通讯作者:
胡军勇
作者简介:
胡亚丽(1998—),女,硕士研究生,m15735267587@163.com
基金资助:
CLC Number:
Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine[J]. CIESC Journal, 2023, 74(8): 3513-3521.
胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521.
名称 | 相对分子质量 | 纯度 | 厂家 |
---|---|---|---|
氯化锂LiCl | 94.00 | AR,99.0% | 上海麦克林生化科技 |
氯化铵NH4Cl | 98.50 | AR,99.5% | 上海麦克林生化科技 |
氯化钠NaCl | 58.44 | AR,≥99.5% | 天津大茂化学试剂厂 |
铁氰化钾K3[Fe(CN)6] | 329.24 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾K4[Fe(CN)6] | 422.39 | AR,99.0% | 天津大茂化学试剂厂 |
Table 1 Basic parameters of mineral salts
名称 | 相对分子质量 | 纯度 | 厂家 |
---|---|---|---|
氯化锂LiCl | 94.00 | AR,99.0% | 上海麦克林生化科技 |
氯化铵NH4Cl | 98.50 | AR,99.5% | 上海麦克林生化科技 |
氯化钠NaCl | 58.44 | AR,≥99.5% | 天津大茂化学试剂厂 |
铁氰化钾K3[Fe(CN)6] | 329.24 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾K4[Fe(CN)6] | 422.39 | AR,99.0% | 天津大茂化学试剂厂 |
型号 | 厚度 δ ×104/m | 选择 透过性/% | 电阻/ (Ω∙cm2) |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
Table 2 Basic parameters of IEMs
型号 | 厚度 δ ×104/m | 选择 透过性/% | 电阻/ (Ω∙cm2) |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
型号 | 材料 | 开孔面积/% | 孔隙率/% | |||
---|---|---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 | 3.16 | 1.0 |
Table 3 Relevant parameters of the spacers
型号 | 材料 | 开孔面积/% | 孔隙率/% | |||
---|---|---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 | 3.16 | 1.0 |
1 | Xia J B, Eigenberger G, Strathmann H, et al. Acid-base flow battery, based on reverse electrodialysis with bi-polar membranes: stack experiments[J]. Processes, 2020, 8(1): 99. |
2 | 陈霞, 蒋晨啸, 汪耀明, 等. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1): 188-202. |
Chen X, Jiang C X, Wang Y M, et al. Advances in reverse electrodialysis and its applications on renewable energy & environment protection[J]. CIESC Journal, 2018, 69(1): 188-202. | |
3 | 邓会宁, 田明, 杨秀丽, 等. 反电渗析法海洋盐差电池的结构优化与能量分析[J]. 化工学报, 2015, 66(5): 1919-1924. |
Deng H N, Tian M, Yang X L, et al. Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J]. CIESC Journal, 2015, 66(5): 1919-1924. | |
4 | Tian H L, Wang Y, Pei Y S, et al. Unique applications and improvements of reverse electrodialysis: a review and outlook[J]. Applied Energy, 2020, 262: 114482. |
5 | Tamburini A, La Barbera G, Cipollina A, et al. CFD prediction of scalar transport in thin channels for reverse electrodialysis[J]. Desalination and Water Treatment, 2015, 55(12): 3424-3445. |
6 | Altaee A, Zaragoza G, Drioli E, et al. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process[J]. Applied Energy, 2017, 199: 359-369. |
7 | Altaee A, Zhou J, Alhathal Alanezi A, et al. Pressure retarded osmosis process for power generation: feasibility, energy balance and controlling parameters[J]. Applied Energy, 2017, 206: 303-311. |
8 | Prante J L, Ruskowitz J A, Childress A E, et al. RO-PRO desalination: an integrated low-energy approach to seawater desalination[J]. Applied Energy, 2014, 120: 104-114. |
9 | Kim H, Yang S, Choi J, et al. Optimization of the number of cell pairs to design efficient reverse electrodialysis stack[J]. Desalination, 2021, 497: 114676. |
10 | 刘子健, 鹿丁, 白银, 等. 反向电渗析热机发生单元研究进展[J]. 科学通报, 2021, 66(30): 3811-3821. |
Liu Z J, Lu D, Bai Y, et al. Progress on the regeneration unit of a reverse electrodialysis heat engine[J]. Chinese Science Bulletin, 2021, 66(30): 3811-3821. | |
11 | Vermaas D A, Veerman J, Saakes M, et al. Influence of multivalent ions on renewable energy generation in reverse electrodialysis[J]. Energy & Environmental Science, 2014, 7(4): 1434-1445. |
12 | Simões C, Pintossi D, Saakes M, et al. Electrode segmentation in reverse electrodialysis: improved power and energy efficiency[J]. Desalination, 2020, 492: 114604. |
13 | Tufa R A, Piallat T, Hnát J, et al. Salinity gradient power reverse electrodialysis: cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity[J]. Chemical Engineering Journal, 2020, 380: 122461. |
14 | Li J B, Zhang C, Liu K, et al. Experimental study on salinity gradient energy recovery from desalination seawater based on RED[J]. Energy Conversion and Management, 2021, 244: 114475. |
15 | Olsson M, Wick G L, Isaacs J D. Salinity gradient power: utilizing vapor pressure differences[J]. Science, 1979, 206(4417): 452-454. |
16 | Olsson M S. Salinity-gradient vapor-pressure power conversion[J]. Energy, 1982, 7(3): 237-246. |
17 | Tufa R A, Pawlowski S, Veerman J, et al. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage[J]. Applied Energy, 2018, 225: 290-331. |
18 | Tamburini A, Tedesco M, Cipollina A, et al. Reverse electrodialysis heat engine for sustainable power production[J]. Applied Energy, 2017, 206: 1334-1353. |
19 | Giacalone F, Vassallo F, Scargiali F, et al. The first operating thermolytic reverse electrodialysis heat engine[J]. Journal of Membrane Science, 2020, 595: 117522. |
20 | Micari M, Cipollina A, Giacalone F, et al. Towards the first proof of the concept of a reverse electrodialysis-membrane distillation heat engine[J]. Desalination, 2019, 453: 77-88. |
21 | 殷纪强, 于泽庭, 张承刚, 等. 一种低温余热驱动的新型功冷联供系统[J]. 中国电机工程学报, 2018, 38(9): 2679-2686, 2837. |
Yin J Q, Yu Z T, Zhang C G, et al. A novel power/cooling cogeneration system driven by low-grade waste heat[J]. Proceedings of the CSEE, 2018, 38(9): 2679-2686, 2837. | |
22 | 徐士鸣, 张凯, 吴曦, 等. 电流与浓差对逆电渗析电堆内质量传递的影响[J]. 化工学报, 2018, 69(10): 4206-4215. |
Xu S M, Zhang K, Wu X, et al. Influence of current density and concentration difference between solutions on mass transfer in reverse electro-dialysis stack[J]. CIESC Journal, 2018, 69(10): 4206-4215. | |
23 | 吴曦, 徐士鸣, 吴德兵, 等. 逆电渗析法热-电转换系统循环工质匹配准则[J]. 化工学报, 2016, 67(S2): 326-332. |
Wu X, Xu S M, Wu D B, et al. Methodology of assessing working mediums availability for a novel heat-power conversion system with reverse electrodialysis technology[J]. CIESC Journal, 2016, 67(S2): 326-332. | |
24 | Kim D H, Park B H, Kwon K, et al. Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery[J]. Applied Energy, 2017, 189: 201-210. |
25 | 吴德兵, 徐士鸣, 吴曦, 等. 不同单价电解质水溶液对逆电渗析电堆工作特性的影响[J]. 化工进展, 2019, 38(6): 2738-2745. |
Wu D B, Xu S M, Wu X, et al. Influences of different monovalent electrolyte aqueous solution on the performance characteristics of reverse electrodialysis stack[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2738-2745. | |
26 | 徐士鸣, 吴德兵, 吴曦, 等. 氯化锂溶液为工质的溶液浓差发电实验研究[J]. 大连理工大学学报, 2017, 57(4): 337-344. |
Xu S M, Wu D B, Wu X, et al. Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid[J]. Journal of Dalian University of Technology, 2017, 57(4): 337-344. | |
27 | 王卫东. LiCl在异丙醇中热力学性质的研究[J]. 盐湖研究, 2007, 15(3): 28-32. |
Wang W D. Study on thermodynamic properties of LiCl in 2-propanol solvent[J]. Journal of Salt Lake Research, 2007, 15(3): 28-32. | |
28 | Chen H, Wang L S, Jiang B, et al. Measurements of conductivity for low concentration strongelectrolytes in organic solvents (Ⅰ): LiBr, LiCl, and LiNO3 in alcohols[J]. Chinese Journal of Chemical Engineering, 2012, 20(5): 1024-1033. |
29 | 龚英. 金属盐-有机溶剂-水体系电导性和电转换性研究[D]. 大连: 大连理工大学, 2019. |
Gong Y. Electrical conductivity and electrical convertibility of the metal salt-organic solvent-water systems[D].Dalian: Dalian University of Technology, 2019. | |
30 | Wu X, Xu S M, Wu D B, et al. Electric conductivity and electric convertibility of potassium acetate in water, ethanol, 2,2,2-trifluoroethanol, 2-propanol and their binary blends[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2581-2591. |
31 | Wu X, Gong Y, Xu S M, et al. Electrical conductivity of lithium chloride, lithium bromide, and lithium iodide electrolytes in methanol, water, and their binary mixtures[J]. Journal of Chemical & Engineering Data, 2019, 64(10): 4319-4329. |
32 | Micari M, Bevacqua M, Cipollina A, et al. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications[J]. Journal of Membrane Science, 2018, 551: 315-325. |
33 | Vermaas D A, Saakes M, Nijmeijer K. Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science & Technology, 2011, 45(16): 7089-7095. |
34 | Mei Y, Tang C Y. Recent developments and future perspectives of reverse electrodialysis technology: a review[J]. Desalination, 2018, 425: 156-174. |
35 | 王一玮. 反向电渗析盐差膜堆系统产电特性及其影响因素研究[D]. 西安: 西安理工大学, 2022. |
Wang Y W. Investigation on the power generation performance of a salt-difference stack system by reverse electrodialysis and its influencing factors[D].Xi'an: Xi'an University of Technology, 2022. | |
36 | Weinstein J N, Leitz F B. Electric power from differences in salinity: the dialytic battery[J]. Science, 1976, 191(4227): 557-559. |
37 | Post J W, Hamelers H V M, Buisman C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science & Technology, 2008, 42(15): 5785-5790. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[10] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[13] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[14] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[15] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||