CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3637-3647.DOI: 10.11949/0438-1157.20210229
• Catalysis, kinetics and reactors • Previous Articles Next Articles
CHEN Xiaofen(),GUO Minxue,JIA Lishan(
)
Received:
2021-02-07
Revised:
2021-03-31
Online:
2021-07-05
Published:
2021-07-05
Contact:
JIA Lishan
通讯作者:
贾立山
作者简介:
陈小芬(1997—),女,硕士研究生,基金资助:
CLC Number:
CHEN Xiaofen, GUO Minxue, JIA Lishan. Study of catalytic performance of nitrogen modified carbon black supported PdCu alloy for decomposition of formic acid to hydrogen[J]. CIESC Journal, 2021, 72(7): 3637-3647.
陈小芬, 郭敏学, 贾立山. 氮修饰炭黑负载PdCu合金催化甲酸分解制氢性能研究[J]. 化工学报, 2021, 72(7): 3637-3647.
1 | Felderhoff M, Weidenthaler C, von Helmolt R, et al. Hydrogen storage: the remaining scientific and technological challenges[J]. Physical Chemistry Chemical Physics, 2007, 9(21): 2643-2653. |
2 | Guerriero A, Bricout H, Sordakis K, et al. Hydrogen production by selective dehydrogenation of HCOOH catalyzed by Ru-biaryl sulfonated phosphines in aqueous solution[J]. ACS Catalysis, 2014, 4(9): 3002-3012. |
3 | Montandon-Clerc M, Dalebrook A F, Laurenczy G. Quantitative aqueous phase formic acid dehydrogenation using iron(Ⅱ) based catalysts[J]. Journal of Catalysis, 2016, 343: 62-67. |
4 | Zhou X C, Huang Y J, Xing W, et al. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C[J]. Chemical Communications, 2008, (30): 3540. |
5 | Gu X J, Lu Z H, Jiang H L, et al. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J]. Journal of the American Chemical Society, 2011, 133(31): 11822-11825. |
6 | Bi Q Y, Lin J D, Liu Y M, et al. Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium[J]. Journal of Power Sources, 2016, 328: 463-471. |
7 | Akbayrak S, Tonbul Y, Özkar S. Nanoceria supported palladium(0) nanoparticles: superb catalyst in dehydrogenation of formic acid at room temperature[J]. Applied Catalysis B: Environmental, 2017, 206: 384-392. |
8 | Yadav M, Singh A K, Tsumori N, et al. Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage[J]. Journal of Materials Chemistry, 2012, 22(36): 19146-19150. |
9 | Wang N, Sun Q M, Bai R S, et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation[J]. Journal of the American Chemical Society, 2016, 138(24): 7484-7487. |
10 | Yadav M, Akita T, Tsumori N, et al. Strong metal-molecular support interaction (SMMSI): amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid[J]. Journal of Materials Chemistry, 2012, 22(25): 12582. |
11 | Ke F, Wang L H, Zhu J F. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid[J]. Nanoscale, 2015, 7(18): 8321-8325. |
12 | Patel N, Fernandes R, Gupta S, et al. Co-B catalyst supported over mesoporous silica for hydrogen production by catalytic hydrolysis of ammonia borane: a study on influence of pore structure[J]. Applied Catalysis B: Environmental, 2013, 140/141: 125-132. |
13 | Mori K, Tanaka H, Dojo M, et al. Synergic catalysis of PdCu alloy nanoparticles within a macroreticular basic resin for hydrogen production from formic acid[J]. Chemistry — A European Journal, 2015, 21(34): 12085-12092. |
14 | Mori K, Naka K, Masuda S, et al. Palladium copper chromium ternary nanoparticles constructed in situ within a basic resin: enhanced activity in the dehydrogenation of formic acid[J]. ChemCatChem, 2017, 9(18): 3456-3462. |
15 | Zhu Q L, Tsumori N, Xu Q. Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres: a weakly-capping growth approach[J]. Journal of the American Chemical Society, 2015, 137(36): 11743-11748. |
16 | Zhang S, Jiang B, Jiang K, et al. Surfactant-free synthesis of carbon-supported palladium nanoparticles and size-dependent hydrogen production from formic acid-formate solution[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24678-24687. |
17 | Zhang J S, Wang H Y, Zhao Q, et al. Facile synthesis of PdAu/C by cold plasma for efficient dehydrogenation of formic acid[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9624-9634. |
18 | Cheng J, Gu X J, Liu P L, et al. Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal-organic frameworks at room temperature[J]. Journal of Materials Chemistry A, 2016, 4(42): 16645-16652. |
19 | Dai H M, Xia B Q, Wen L, et al. Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid[J]. Applied Catalysis B: Environmental, 2015, 165: 57-62. |
20 | Yurderi M, Bulut A, Zahmakiran M, et al. Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition[J]. Applied Catalysis B: Environmental, 2014, 160/161: 514-524. |
21 | Xu L X, Jin B, Zhang J, et al. Efficient hydrogen generation from formic acid using AgPd nanoparticles immobilized on carbon nitride-functionalized SBA-15[J]. RSC Advances, 2016, 6(52): 46908-46914. |
22 | Cao N, Tan S Y, Luo W, et al. Ternary CoAgPd nanoparticles confined inside the pores of MIL-101 as efficient catalyst for dehydrogenation of formic acid[J]. Catalysis Letters, 2016, 146(2): 518-524. |
23 | Yao F, Li X, Wan C, et al. Highly efficient hydrogen release from formic acid using a graphitic carbon nitride-supported AgPd nanoparticle catalyst[J]. Applied Surface Science, 2017, 426: 605-611. |
24 | Akbayrak S. Decomposition of formic acid using tungsten(Ⅵ) oxide supported AgPd nanoparticles[J]. Journal of Colloid and Interface Science, 2019, 538: 682-688. |
25 | Wang Z L, Yan J M, Zhang Y F, et al. Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature[J]. Nanoscale, 2014, 6(6): 3073-3077. |
26 | Kaichev V V, Popova G Y, Chesalov Y A, et al. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst[J]. Journal of Catalysis, 2014, 311: 59-70. |
27 | Ma H Y, Peng J, Chen Y H, et al. Photoluminescent multilayer film based on polyoxometalate and tris(2, 2-bipyridine)ruthenium[J]. Journal of Solid State Chemistry, 2004, 177(10): 3333-3338. |
28 | Zaluzhna O, Zangmeister C, Tong Y J. Synthesis of Au and Ag nanoparticles with alkylselenocyanates[J]. RSC Advances, 2012, 2(19): 7396. |
29 | Zhao P P, Xu W, Yang D F, et al. Metal-organic framework immobilized CoAuPd nanoparticles with high content of non-precious metal for highly efficient hydrogen generation from formic acid[J]. ChemistrySelect, 2016, 1(7): 1400-1404. |
30 | Wang R, Wu Q D, Lu Y, et al. Preparation of nitrogen-doped TiO2/graphene nanohybrids and application as counter electrode for dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2118-2124. |
31 | Lopez T, Picquart M, Aguirre G, et al. Thermal characterization of agar encapsulated in TiO2 sol-gel[J]. International Journal of Thermophysics, 2004, 25(5): 1483-1493. |
32 | 殷广明, 邓启刚, 毕野, 等. 模板合成H4PMo11VO40/聚苯胺纳米线列阵及其聚合机理探讨[J]. 高分子学报, 2008, (5): 430-434. |
Yin G M, Deng Q G, Bi Y, et al. Template synthesis and polymerization mechanism of HPA/PANI nanowire arrays[J]. Acta Polymerica Sinica, 2008, (5): 430-434. | |
33 | Dong K H, Wang X W. Development of cost effective ultra-lightweight cellulose-based sound absorbing material over silica sol/natural fiber blended substrate[J]. Carbohydrate Polymers, 2021, 255: 117369. |
34 | Aphesteguy J C, Jacobo S E. Composite of polyaniline containing iron oxides[J]. Physica B: Condensed Matter, 2004, 354(1/2/3/4): 224-227. |
35 | Sun Q Z, Kim S. Synthesis of nitrogen-doped graphene supported Pt nanoparticles catalysts and their catalytic activity for fuel cells[J]. Electrochimica Acta, 2015, 153: 566-573. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[6] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[7] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[8] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[11] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[14] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[15] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 582
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 535
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||