1 |
Felderhoff M, Weidenthaler C, von Helmolt R, et al. Hydrogen storage: the remaining scientific and technological challenges[J]. Physical Chemistry Chemical Physics, 2007, 9(21): 2643-2653.
|
2 |
Guerriero A, Bricout H, Sordakis K, et al. Hydrogen production by selective dehydrogenation of HCOOH catalyzed by Ru-biaryl sulfonated phosphines in aqueous solution[J]. ACS Catalysis, 2014, 4(9): 3002-3012.
|
3 |
Montandon-Clerc M, Dalebrook A F, Laurenczy G. Quantitative aqueous phase formic acid dehydrogenation using iron(Ⅱ) based catalysts[J]. Journal of Catalysis, 2016, 343: 62-67.
|
4 |
Zhou X C, Huang Y J, Xing W, et al. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C[J]. Chemical Communications, 2008, (30): 3540.
|
5 |
Gu X J, Lu Z H, Jiang H L, et al. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J]. Journal of the American Chemical Society, 2011, 133(31): 11822-11825.
|
6 |
Bi Q Y, Lin J D, Liu Y M, et al. Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium[J]. Journal of Power Sources, 2016, 328: 463-471.
|
7 |
Akbayrak S, Tonbul Y, Özkar S. Nanoceria supported palladium(0) nanoparticles: superb catalyst in dehydrogenation of formic acid at room temperature[J]. Applied Catalysis B: Environmental, 2017, 206: 384-392.
|
8 |
Yadav M, Singh A K, Tsumori N, et al. Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage[J]. Journal of Materials Chemistry, 2012, 22(36): 19146-19150.
|
9 |
Wang N, Sun Q M, Bai R S, et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation[J]. Journal of the American Chemical Society, 2016, 138(24): 7484-7487.
|
10 |
Yadav M, Akita T, Tsumori N, et al. Strong metal-molecular support interaction (SMMSI): amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid[J]. Journal of Materials Chemistry, 2012, 22(25): 12582.
|
11 |
Ke F, Wang L H, Zhu J F. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid[J]. Nanoscale, 2015, 7(18): 8321-8325.
|
12 |
Patel N, Fernandes R, Gupta S, et al. Co-B catalyst supported over mesoporous silica for hydrogen production by catalytic hydrolysis of ammonia borane: a study on influence of pore structure[J]. Applied Catalysis B: Environmental, 2013, 140/141: 125-132.
|
13 |
Mori K, Tanaka H, Dojo M, et al. Synergic catalysis of PdCu alloy nanoparticles within a macroreticular basic resin for hydrogen production from formic acid[J]. Chemistry — A European Journal, 2015, 21(34): 12085-12092.
|
14 |
Mori K, Naka K, Masuda S, et al. Palladium copper chromium ternary nanoparticles constructed in situ within a basic resin: enhanced activity in the dehydrogenation of formic acid[J]. ChemCatChem, 2017, 9(18): 3456-3462.
|
15 |
Zhu Q L, Tsumori N, Xu Q. Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres: a weakly-capping growth approach[J]. Journal of the American Chemical Society, 2015, 137(36): 11743-11748.
|
16 |
Zhang S, Jiang B, Jiang K, et al. Surfactant-free synthesis of carbon-supported palladium nanoparticles and size-dependent hydrogen production from formic acid-formate solution[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24678-24687.
|
17 |
Zhang J S, Wang H Y, Zhao Q, et al. Facile synthesis of PdAu/C by cold plasma for efficient dehydrogenation of formic acid[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9624-9634.
|
18 |
Cheng J, Gu X J, Liu P L, et al. Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal-organic frameworks at room temperature[J]. Journal of Materials Chemistry A, 2016, 4(42): 16645-16652.
|
19 |
Dai H M, Xia B Q, Wen L, et al. Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid[J]. Applied Catalysis B: Environmental, 2015, 165: 57-62.
|
20 |
Yurderi M, Bulut A, Zahmakiran M, et al. Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition[J]. Applied Catalysis B: Environmental, 2014, 160/161: 514-524.
|
21 |
Xu L X, Jin B, Zhang J, et al. Efficient hydrogen generation from formic acid using AgPd nanoparticles immobilized on carbon nitride-functionalized SBA-15[J]. RSC Advances, 2016, 6(52): 46908-46914.
|
22 |
Cao N, Tan S Y, Luo W, et al. Ternary CoAgPd nanoparticles confined inside the pores of MIL-101 as efficient catalyst for dehydrogenation of formic acid[J]. Catalysis Letters, 2016, 146(2): 518-524.
|
23 |
Yao F, Li X, Wan C, et al. Highly efficient hydrogen release from formic acid using a graphitic carbon nitride-supported AgPd nanoparticle catalyst[J]. Applied Surface Science, 2017, 426: 605-611.
|
24 |
Akbayrak S. Decomposition of formic acid using tungsten(Ⅵ) oxide supported AgPd nanoparticles[J]. Journal of Colloid and Interface Science, 2019, 538: 682-688.
|
25 |
Wang Z L, Yan J M, Zhang Y F, et al. Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature[J]. Nanoscale, 2014, 6(6): 3073-3077.
|
26 |
Kaichev V V, Popova G Y, Chesalov Y A, et al. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst[J]. Journal of Catalysis, 2014, 311: 59-70.
|
27 |
Ma H Y, Peng J, Chen Y H, et al. Photoluminescent multilayer film based on polyoxometalate and tris(2, 2-bipyridine)ruthenium[J]. Journal of Solid State Chemistry, 2004, 177(10): 3333-3338.
|
28 |
Zaluzhna O, Zangmeister C, Tong Y J. Synthesis of Au and Ag nanoparticles with alkylselenocyanates[J]. RSC Advances, 2012, 2(19): 7396.
|
29 |
Zhao P P, Xu W, Yang D F, et al. Metal-organic framework immobilized CoAuPd nanoparticles with high content of non-precious metal for highly efficient hydrogen generation from formic acid[J]. ChemistrySelect, 2016, 1(7): 1400-1404.
|
30 |
Wang R, Wu Q D, Lu Y, et al. Preparation of nitrogen-doped TiO2/graphene nanohybrids and application as counter electrode for dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2118-2124.
|
31 |
Lopez T, Picquart M, Aguirre G, et al. Thermal characterization of agar encapsulated in TiO2 sol-gel[J]. International Journal of Thermophysics, 2004, 25(5): 1483-1493.
|
32 |
殷广明, 邓启刚, 毕野, 等. 模板合成H4PMo11VO40/聚苯胺纳米线列阵及其聚合机理探讨[J]. 高分子学报, 2008, (5): 430-434.
|
|
Yin G M, Deng Q G, Bi Y, et al. Template synthesis and polymerization mechanism of HPA/PANI nanowire arrays[J]. Acta Polymerica Sinica, 2008, (5): 430-434.
|
33 |
Dong K H, Wang X W. Development of cost effective ultra-lightweight cellulose-based sound absorbing material over silica sol/natural fiber blended substrate[J]. Carbohydrate Polymers, 2021, 255: 117369.
|
34 |
Aphesteguy J C, Jacobo S E. Composite of polyaniline containing iron oxides[J]. Physica B: Condensed Matter, 2004, 354(1/2/3/4): 224-227.
|
35 |
Sun Q Z, Kim S. Synthesis of nitrogen-doped graphene supported Pt nanoparticles catalysts and their catalytic activity for fuel cells[J]. Electrochimica Acta, 2015, 153: 566-573.
|