CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5114-5122.DOI: 10.11949/0438-1157.20210374
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Aixia PENG(),Jingjing ZHAN(),Minghuo WU
Received:
2021-03-12
Revised:
2021-05-18
Online:
2021-10-05
Published:
2021-10-05
Contact:
Jingjing ZHAN
通讯作者:
占敬敬
作者简介:
彭爱夏(1995—),女,硕士研究生,基金资助:
CLC Number:
Aixia PENG,Jingjing ZHAN,Minghuo WU. Optimization of nanoparticles transport model in porous media[J]. CIESC Journal, 2021, 72(10): 5114-5122.
彭爱夏,占敬敬,吴明火. 纳米粒子在多孔介质中迁移模型的优化[J]. 化工学报, 2021, 72(10): 5114-5122.
Add to citation manager EndNote|Ris|BibTeX
参数 | 物理意义 | 表达式 |
---|---|---|
孔隙度常数 | ||
纵横比 | ||
佩克莱数 | ||
范德华数 | ||
引力数 | ||
重力数 |
Table 1 Expression of parameters in the T-E model
参数 | 物理意义 | 表达式 |
---|---|---|
孔隙度常数 | ||
纵横比 | ||
佩克莱数 | ||
范德华数 | ||
引力数 | ||
重力数 |
持水度fr | 穿透率C/C0 | 孔隙常数F | 去除率η | 碰撞效率η0' | 拦截机制的碰撞效率ηI' |
---|---|---|---|---|---|
0.1275 | 0.8333 | 0.2865 | 0.00111 | 0.04086 (=η0) | 0.00486 (=ηI) |
0.1313 | 0.8496 | 0.2951 | 0.00987 | 0.03652 | 0.00052 |
0.1376 | 0.8370 | 0.3092 | 0.00108 | 0.03987 | 0.00387 |
0.1421 | 0.8287 | 0.3193 | 0.00114 | 0.04208 | 0.00608 |
0.1598 | 0.8259 | 0.3591 | 0.00116 | 0.04284 | 0.00684 |
0.1663 | 0.8125 | 0.3737 | 0.00126 | 0.04650 | 0.01050 |
0.1721 | 0.8185 | 0.3867 | 0.00121 | 0.04487 | 0.00887 |
0.1820 | 0.8133 | 0.4090 | 0.00125 | 0.04628 | 0.01028 |
0.1894 | 0.8143 | 0.4256 | 0.00124 | 0.04601 | 0.01001 |
0.1953 | 0.8052 | 0.4389 | 0.00131 | 0.04852 | 0.01251 |
0.1971 | 0.8094 | 0.4429 | 0.00128 | 0.04737 | 0.01137 |
0.2116 | 0.7961 | 0.4755 | 0.00138 | 0.05107 | 0.01507 |
0.2237 | 0.7883 | 0.5027 | 0.00144 | 0.05330 | 0.01730 |
0.2296 | 0.7935 | 0.5160 | 0.00140 | 0.05181 | 0.01581 |
0.2318 | 0.7811 | 0.5209 | 0.00150 | 0.05534 | 0.01934 |
0.2351 | 0.7762 | 0.5283 | 0.00153 | 0.05676 | 0.02076 |
0.2453 | 0.7631 | 0.5512 | 0.00164 | 0.06057 | 0.02457 |
0.2487 | 0.7708 | 0.5589 | 0.00158 | 0.05830 | 0.02230 |
Table 2 Experimental data of nTiO2 transported in quartz sand (porosity is 0.445)
持水度fr | 穿透率C/C0 | 孔隙常数F | 去除率η | 碰撞效率η0' | 拦截机制的碰撞效率ηI' |
---|---|---|---|---|---|
0.1275 | 0.8333 | 0.2865 | 0.00111 | 0.04086 (=η0) | 0.00486 (=ηI) |
0.1313 | 0.8496 | 0.2951 | 0.00987 | 0.03652 | 0.00052 |
0.1376 | 0.8370 | 0.3092 | 0.00108 | 0.03987 | 0.00387 |
0.1421 | 0.8287 | 0.3193 | 0.00114 | 0.04208 | 0.00608 |
0.1598 | 0.8259 | 0.3591 | 0.00116 | 0.04284 | 0.00684 |
0.1663 | 0.8125 | 0.3737 | 0.00126 | 0.04650 | 0.01050 |
0.1721 | 0.8185 | 0.3867 | 0.00121 | 0.04487 | 0.00887 |
0.1820 | 0.8133 | 0.4090 | 0.00125 | 0.04628 | 0.01028 |
0.1894 | 0.8143 | 0.4256 | 0.00124 | 0.04601 | 0.01001 |
0.1953 | 0.8052 | 0.4389 | 0.00131 | 0.04852 | 0.01251 |
0.1971 | 0.8094 | 0.4429 | 0.00128 | 0.04737 | 0.01137 |
0.2116 | 0.7961 | 0.4755 | 0.00138 | 0.05107 | 0.01507 |
0.2237 | 0.7883 | 0.5027 | 0.00144 | 0.05330 | 0.01730 |
0.2296 | 0.7935 | 0.5160 | 0.00140 | 0.05181 | 0.01581 |
0.2318 | 0.7811 | 0.5209 | 0.00150 | 0.05534 | 0.01934 |
0.2351 | 0.7762 | 0.5283 | 0.00153 | 0.05676 | 0.02076 |
0.2453 | 0.7631 | 0.5512 | 0.00164 | 0.06057 | 0.02457 |
0.2487 | 0.7708 | 0.5589 | 0.00158 | 0.05830 | 0.02230 |
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.025 | 2.3×10-6 | 0.000409 | 1.1×10-6 | 0.025 | 0.01637 | 0.01523 | 0.04023 | 0.01017 |
0.025 | 2.3×10-6 | 0.000356 | 1.1×10-6 | 0.025 | 0.01425 | 0.00989 | 0.03489 | 0.01021 |
0.025 | 2.3×10-6 | 0.000349 | 1.1×10-6 | 0.025 | 0.01397 | 0.00925 | 0.03426 | 0.01020 |
0.025 | 2.3×10-6 | 0.000326 | 1.1×10-6 | 0.025 | 0.01303 | 0.00705 | 0.03206 | 0.01017 |
0.025 | 2.3×10-6 | 0.000316 | 1.1×10-6 | 0.025 | 0.01262 | 0.00593 | 0.03094 | 0.01020 |
0.025 | 2.3×10-6 | 0.000303 | 1.1×10-6 | 0.025 | 0.01210 | 0.00466 | 0.02967 | 0.01020 |
Table 3 Values calculated by the T-E model before and after optimization (nSiO2)
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.025 | 2.3×10-6 | 0.000409 | 1.1×10-6 | 0.025 | 0.01637 | 0.01523 | 0.04023 | 0.01017 |
0.025 | 2.3×10-6 | 0.000356 | 1.1×10-6 | 0.025 | 0.01425 | 0.00989 | 0.03489 | 0.01021 |
0.025 | 2.3×10-6 | 0.000349 | 1.1×10-6 | 0.025 | 0.01397 | 0.00925 | 0.03426 | 0.01020 |
0.025 | 2.3×10-6 | 0.000326 | 1.1×10-6 | 0.025 | 0.01303 | 0.00705 | 0.03206 | 0.01017 |
0.025 | 2.3×10-6 | 0.000316 | 1.1×10-6 | 0.025 | 0.01262 | 0.00593 | 0.03094 | 0.01020 |
0.025 | 2.3×10-6 | 0.000303 | 1.1×10-6 | 0.025 | 0.01210 | 0.00466 | 0.02967 | 0.01020 |
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.058 | 2.0×10-6 | 0.001362 | 2.5×10-6 | 0.058 | 0.02337 | 0.15141 | 0.20968 | 0.00649 |
0.058 | 2.0×10-6 | 0.001227 | 2.5×10-6 | 0.058 | 0.02105 | 0.13077 | 0.18903 | 0.00649 |
0.058 | 2.0×10-6 | 0.001041 | 2.5×10-6 | 0.058 | 0.01785 | 0.10399 | 0.16225 | 0.00641 |
0.058 | 2.0×10-6 | 0.001017 | 2.5×10-6 | 0.058 | 0.01745 | 0.09987 | 0.15813 | 0.00643 |
0.058 | 2.0×10-6 | 0.000860 | 2.5×10-6 | 0.058 | 0.01476 | 0.07661 | 0.13488 | 0.00638 |
Table 4 Values calculated by the T-E model before and after optimization(nTiO2)
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.058 | 2.0×10-6 | 0.001362 | 2.5×10-6 | 0.058 | 0.02337 | 0.15141 | 0.20968 | 0.00649 |
0.058 | 2.0×10-6 | 0.001227 | 2.5×10-6 | 0.058 | 0.02105 | 0.13077 | 0.18903 | 0.00649 |
0.058 | 2.0×10-6 | 0.001041 | 2.5×10-6 | 0.058 | 0.01785 | 0.10399 | 0.16225 | 0.00641 |
0.058 | 2.0×10-6 | 0.001017 | 2.5×10-6 | 0.058 | 0.01745 | 0.09987 | 0.15813 | 0.00643 |
0.058 | 2.0×10-6 | 0.000860 | 2.5×10-6 | 0.058 | 0.01476 | 0.07661 | 0.13488 | 0.00638 |
1 | Kim H, Beack S, Han S, et al. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications[J]. Advanced Materials, 2018, 30(10): 1701460. |
2 | Song Y, Fang G D, Zhu C Y, et al. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study[J]. Chemical Engineering Journal, 2019, 355: 65-75. |
3 | Tang L, Feng H P, Tang J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism[J]. Water Research, 2017, 117: 175-186. |
4 | Wang H L, Liang X T, Wang J T, et al. Multifunctional inorganic nanomaterials for energy applications[J]. Nanoscale, 2020, 12(1): 14-42. |
5 | 姜雪辉, 范伟, 霍明昕, 等. 离子组成对氧化石墨烯在饱和多孔介质中迁移行为的影响[J]. 化工学报, 2015, 66(4): 1484-1490. |
Jiang X H, Fan W, Huo M X, et al. Effect of cations composition on transport of graphene oxide in saturated porous media[J]. CIESC Journal, 2015, 66(4): 1484-1490. | |
6 | Molnar I L, Pensini E, Asad M A, et al. Colloid transport in porous media: a review of classical mechanisms and emerging topics[J]. Transport in Porous Media, 2019, 130(1): 129-156. |
7 | Sun PD, Shijirbaatar A, Fang J, et al. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns[J]. Science of the Total Environment, 2015, 505: 189-198. |
8 | Guo Y, Lou J C, Cho J K, et al. Transport of colloidal particles in microscopic porous medium analogues with surface charge heterogeneity: experiments and the fundamental role of single-bead deposition[J]. Environmental Science & Technology, 2020, 54(21): 13651-13660. |
9 | Qu D, Ren H J, Zhou R, et al. Visualisation study on Pseudomonas migulae AN-1 transport in saturated porous media[J]. Water Research, 2017, 122: 329-336. |
10 | Li J, Xie X H, Ghoshal S. Correlation equation for predicting the single-collector contact efficiency of colloids in a horizontal flow[J]. Langmuir, 2015, 31(26): 7210-7219. |
11 | Swift D L, Friedlander S K. Coagulation of hydrosols by Brownian motion + laminar shear flow[J]. Journal of Colloid Science, 1964, 19(7): 621. |
12 | Logan B E, Jewett D G, Arnold R G, et al. Clarification of clean-bed filtration models[J]. Journal of Environmental Engineering, 1995, 121(12): 869-873. |
13 | Yao K M, Habibian M T, O'Melia C R. Water and waste water filtration. Concepts and applications[J]. Environmental Science & Technology, 1971, 5(11): 1105-1112. |
14 | Ma H L, Hradisky M, Johnson W P. Extending applicability of correlation equations to predict colloidal retention in porous media at low fluid velocity[J]. Environmental Science & Technology, 2013, 47(5): 2272-2278. |
15 | Nelson K E, Ginn T R. New collector efficiency equation for colloid filtration in both natural and engineered flow conditions[J]. Water Resources Research, 2011, 47(5): W05543. |
16 | Long W, Hilpert M. A correlation for the collector efficiency of Brownian particles in clean-bed filtration in sphere packings by a lattice-Boltzmann method[J]. Environmental Science & Technology, 2009, 43(12): 4419-4424. |
17 | Tufenkji N, Elimelech M. Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities[J]. Langmuir, 2005, 21(3): 841-852. |
18 | Rajagopalan R, Tien C. Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model[J]. AIChE Journal, 1976, 22(3): 523-533. |
19 | Tufenkji N, Elimelech M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science & Technology, 2004, 38(2): 529-536. |
20 | Tufenkji N, Miller G F, Ryan J N, et al. Transport of cryptosporidium oocysts in porous media: role of straining and physicochemical filtration[J]. Environmental Science & Technology, 2004, 38(22): 5932-5938. |
21 | Yu Z G, Hu L M, Lo I M C. Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: roles of surface modification and As loading[J]. Chemosphere, 2019, 216: 428-436. |
22 | Taghavy A, Mittelman A, Wang Y G, et al. Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media[J]. Environmental Science & Technology, 2013, 47(15): 8499-8507. |
23 | Jones E H, Su C M. Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials[J]. Water Research, 2012, 46(7): 2445-2456. |
24 | Happel J. Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles[J]. AIChE Journal, 1958, 4(2): 197-201. |
25 | 冶雪艳, 杜新强, 张赫轩, 等. 回灌过程中离子强度和水流流速对胶体粒子在多孔介质中堵塞的影响[J]. 化工学报, 2017, 68(12): 4793-4801. |
Ye X Y, Du X Q, Zhang H X, et al. Effects of solution ionic strength and flow velocity on colloid clogging in saturated porous media during artificial recharge[J]. CIESC Journal, 2017, 68(12): 4793-4801. | |
26 | Bradford S A, Simunek J, Bettahar M, et al. Straining of colloids at textural interfaces[J]. Water Resources Research, 2005, 41(10): W10404. |
27 | Bradford S A, Simunek J, Bettahar M, et al. Significance of straining in colloid deposition: evidence and implications[J]. Water Resources Research, 2006, 42(12): W12S15. |
28 | Liu Q S, Cui X Z, Zhang C Y, et al. Experimental investigation of suspended particles transport through porous media: particle and grain size effect[J]. Environmental Technology, 2016, 37(7): 854-864. |
29 | 祝景彬, 贺慧丹, 李红琴, 等. 牧压梯度下高寒草甸土壤容重及持水能力的变化特征[J]. 水土保持研究, 2018, 25(5): 66-71. |
Zhu J B, He H D, Li H Q, et al. Characteristics of soil bulk density and soil water-holding capacity in alpine meadow under grazing gradients[J]. Research of Soil and Water Conservation, 2018, 25(5): 66-71. | |
30 | Filimonova S V, Knicker H, Häusler W, et al. 129Xe NMR spectroscopy of adsorbed xenon as an approach for the characterisation of soil meso- and microporosity[J]. Geoderma, 2004, 122(1): 25-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||