CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 2735-2752.DOI: 10.11949/0438-1157.20230456
• Reviews and monographs • Previous Articles Next Articles
Yajie YU1(), Jingru LI1, Shufeng ZHOU1, Qingbiao LI2,3, Guowu ZHAN1(
)
Received:
2023-05-11
Revised:
2023-07-04
Online:
2023-08-31
Published:
2023-07-05
Contact:
Guowu ZHAN
余娅洁1(), 李静茹1, 周树锋1, 李清彪2,3, 詹国武1(
)
通讯作者:
詹国武
作者简介:
余娅洁(1999—),女,硕士研究生,alicia061812@163.com
基金资助:
CLC Number:
Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review[J]. CIESC Journal, 2023, 74(7): 2735-2752.
余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752.
Fig.2 Schematic diagram of the fabrication of nanomaterial and integrated catalyst based on biological templates and the dominant catalytic applications
分类 | 模板优势及集成催化剂特点 |
---|---|
植物模板[ | ①表面官能团丰富,可诱导纳米材料沉积; ②尺寸均匀、空间结构精细,可调控集成 催化剂的形貌; ③具有贯通孔结构和高孔隙率,利于反应物和产物分子扩散; ④可实现元素自掺杂(N、P等) |
动物模板[ | ①具有多层次空间结构,可提供更多活性 位点; ②部分夹层结构具有空间限域作用; ③具有较大比表面积和丰富表面官能团; ④集成催化材料的内部结构和孔隙率可调控 |
微生物模板[ | ①生物模板的生长繁殖快,人工培养较容易; ②具有丰富的氨基酸基团,利于制备多组分 集成催化剂; ③可通过基因工程改造技术进行表面修饰; ④还原型生物酶可还原金属离子实现原位 负载金属纳米颗粒 |
生物大分子模板[ | ①衍生的集成催化剂生物兼容性好; ②可通过后修饰或降解调控生物大分子 分子量或活性; ③分子识别特性强,可调控集成催化剂化学 组成; ④自组装能力强,可二次组装 |
Table 1 Classification of biological templates and characteristics of the derived integrated catalysts
分类 | 模板优势及集成催化剂特点 |
---|---|
植物模板[ | ①表面官能团丰富,可诱导纳米材料沉积; ②尺寸均匀、空间结构精细,可调控集成 催化剂的形貌; ③具有贯通孔结构和高孔隙率,利于反应物和产物分子扩散; ④可实现元素自掺杂(N、P等) |
动物模板[ | ①具有多层次空间结构,可提供更多活性 位点; ②部分夹层结构具有空间限域作用; ③具有较大比表面积和丰富表面官能团; ④集成催化材料的内部结构和孔隙率可调控 |
微生物模板[ | ①生物模板的生长繁殖快,人工培养较容易; ②具有丰富的氨基酸基团,利于制备多组分 集成催化剂; ③可通过基因工程改造技术进行表面修饰; ④还原型生物酶可还原金属离子实现原位 负载金属纳米颗粒 |
生物大分子模板[ | ①衍生的集成催化剂生物兼容性好; ②可通过后修饰或降解调控生物大分子 分子量或活性; ③分子识别特性强,可调控集成催化剂化学 组成; ④自组装能力强,可二次组装 |
生物模板 | 纳米催化剂 | 制备方法 | 应用 |
---|---|---|---|
蝴蝶翅膀[ | CuO/CBW | 湿化学法 | 热分解高氯酸铵 |
荷花花粉[ | ZnO/Co3O4 | 浸渍法(湿化学法) | 光降解亚甲基蓝和四环素 |
稻谷壳[ | Bi2WO6/TiO2 | 溶剂热法(湿化学法) | 光降解微囊藻素 |
天然竹子[ | BCP/TiO2 | 直接煅烧法 | 光降解亚甲基蓝 |
菠菜叶[ | CS@Au/ZnO | 湿化学法 | 光降解罗丹明B和环丙沙星 |
废蛋壳[ | CuO/ZnO/ES | 湿化学法 | 光催化还原4-硝基苯酚 |
蝴蝶翅膀[ | ZnO | 原子层沉积法 | 光催化降解罗丹明B |
蝴蝶翅膀[ | Au/TiO2_PW | 湿化学法 | 光热催化降解亚甲基蓝和十二烷基苯磺酸钠 |
松花粉[ | Ce/TiO2 | 溶胶-凝胶法+浸渍法(湿化学法) | 光催化抗菌 |
牛皮胶原纤维[ | 湿化学法 | 酯化反应 | |
玫瑰花瓣[ | CeO2/Co3O4 | 湿化学法 | 光降解亚甲基蓝和四环素 |
玫瑰花瓣[ | ZnWO4 | 浸渍法(湿化学法) | 光降解亚甲基蓝 |
花粉[ | 湿化学法 | 氯苯的硝化反应 | |
松树花粉[ | ZnAl-LDH/ZnCo2O4 | 湿化学法 | 光降解刚果红 |
芭蕉叶[ | TiO2 | 湿化学法 | 光降解亚甲基蓝 |
A.vitifolia Buch.树叶[ | Pt/N-TiO2 | 溶胶-凝胶法(湿化学法) | 光催化产氢 |
Table 2 A summary of the preparation of catalyst materials based on biological templates
生物模板 | 纳米催化剂 | 制备方法 | 应用 |
---|---|---|---|
蝴蝶翅膀[ | CuO/CBW | 湿化学法 | 热分解高氯酸铵 |
荷花花粉[ | ZnO/Co3O4 | 浸渍法(湿化学法) | 光降解亚甲基蓝和四环素 |
稻谷壳[ | Bi2WO6/TiO2 | 溶剂热法(湿化学法) | 光降解微囊藻素 |
天然竹子[ | BCP/TiO2 | 直接煅烧法 | 光降解亚甲基蓝 |
菠菜叶[ | CS@Au/ZnO | 湿化学法 | 光降解罗丹明B和环丙沙星 |
废蛋壳[ | CuO/ZnO/ES | 湿化学法 | 光催化还原4-硝基苯酚 |
蝴蝶翅膀[ | ZnO | 原子层沉积法 | 光催化降解罗丹明B |
蝴蝶翅膀[ | Au/TiO2_PW | 湿化学法 | 光热催化降解亚甲基蓝和十二烷基苯磺酸钠 |
松花粉[ | Ce/TiO2 | 溶胶-凝胶法+浸渍法(湿化学法) | 光催化抗菌 |
牛皮胶原纤维[ | 湿化学法 | 酯化反应 | |
玫瑰花瓣[ | CeO2/Co3O4 | 湿化学法 | 光降解亚甲基蓝和四环素 |
玫瑰花瓣[ | ZnWO4 | 浸渍法(湿化学法) | 光降解亚甲基蓝 |
花粉[ | 湿化学法 | 氯苯的硝化反应 | |
松树花粉[ | ZnAl-LDH/ZnCo2O4 | 湿化学法 | 光降解刚果红 |
芭蕉叶[ | TiO2 | 湿化学法 | 光降解亚甲基蓝 |
A.vitifolia Buch.树叶[ | Pt/N-TiO2 | 溶胶-凝胶法(湿化学法) | 光催化产氢 |
Fig.4 (a) The fabrication routes of scale-walled zirconia hollow sphere, porous zirconia hollow microsphere and their adsorption process; (b) SEM image of rape pollen; (c) SEM image of hollow microspheres with scaly surfaces; (d) SEM image of porous hollow microspheres prepared by using HCl-etched pollen as a template[13]
Fig.5 (a) The fabrication route of ZnZrO x & bio-SAPO-34 bifunctional catalysts; (b) SEM image of the raw rice husk; (c) SEM image of the bifunctional catalysts; (d) The catalytic performance of CO2 thermal catalytic hydrogenation[62]
Fig.6 (a) Schematic diagram of the synthesis of bio-ZSM-5 based on two biological templates with different Si content; (b) A photo of luffa sponge; (c), (d) SEM images of luffa sponge; (e) A photo of bio-ZSM-5 prepared by using luffa sponge as template; (f), (g) SEM images of bio-ZSM-5[14]
Fig.8 (a) Preparation route of TiO2-PEI-ESM composite photocatalyst; (b)—(d) SEM images of the original eggshell membrane; (e)—(g) SEM images of TiO2-PEI-ESM composite photocatalyst[79]
Fig.9 (a) Synthesis route of LMO-MTs and HMO-MTs; (b) SEM image of BB-MTs (biogenic birnessite-microtubes); (c) SEM image of LMO-MT; (d) SEM image of HMO-MT[84]
Fig.10 (a) Schematic illustration of silica nanostructures based on DNA template; (b) Schematic illustration of the “i” pattern DNA template; (c) AFM image of the “i” pattern silica nanomaterial; (d) SEM image of the “i” pattern silica nanomaterial; (e), (f) STEM image and the corresponding EDX elemental line-scanning of the “i”pattern silica nanomaterial[90]
37 | Jiang X A, Liu Y, Hao H J, et al. Rape pollen-templated synthesis of C,N self-doped hierarchical TiO2 for selective hydrogenation of 1,3-butadiene[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 882-888. |
38 | Jiang B, Cha X W, Huang Z L, et al. Green fabrication of hierarchically-structured Pt/bio-CeO2 nanocatalysts using natural pollen templates for low-temperature CO oxidation[J]. Molecular Catalysis, 2022, 524: 112251. |
39 | Liu X A, Zhan G W, Wu J Y, et al. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7162-7173. |
40 | 姜霞, 李雯, 郭云龙, 等. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(1): 485-494. |
Jiang X, Li W, Guo Y L, et al. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 485-494. | |
41 | Qin H Q, Hu T J, Zhai Y B, et al. Sonochemical synthesis of ZnS nanolayers on the surface of microbial cells and their application in the removal of heavy metals[J]. Journal of Hazardous Materials, 2020, 400: 123161. |
42 | Zhou H, Fan T X, Zhang D, et al. Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures[J]. ChemInform, 2007, 38(30): 200730190. |
43 | Koo J, Jeong H J, Choi W, et al. Localized growth of atomic-layer-deposited platinum catalysts on plasma-treated surface of carbon nanotubes[J]. Scripta Materialia, 2023, 226: 115185. |
44 | Rojas E R, Hotton S, Dumais J. Chemically mediated mechanical expansion of the pollen tube cell wall[J]. Biophysical Journal, 2011, 101(8): 1844-1853. |
45 | MacKenzie G, Boa A N, Diego-Taboada A, et al. Sporopollenin, the least known yet toughest natural biopolymer[J]. Frontiers in Materials, 2015, 2: 66. |
46 | Yang F, Su H L, Zhu Y Q, et al. Bioinspired synthesis and gas-sensing performance of porous hierarchical α - F e 2 O 3 / C nanocomposites[J]. Scripta Materialia, 2013, 68(11): 873-876. |
47 | Song F, Su H L, Han J E, et al. Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties[J]. The Journal of Physical Chemistry C, 2012, 116(18): 10274-10281. |
1 | Bell A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691. |
2 | Wu H Q, Xu Z, Choo K K, et al. Application of intelligent algorithms in system integration design[C]//The International Conference on Cyber Security Intelligence and Analytics. Cham: Springer, 2020: 753-759. |
3 | Torres V H, Ríos J, Vizán A, et al. Approach to integrate product conceptual design information into a computer-aided design system[J]. Concurrent Engineering, 2013(1), 21: 27-38. |
4 | Isik I, Tagluk M E. Analysis of the electronic integrate and fire neuron model[J]. Neurocomputing, 2022, 488: 261-270. |
5 | Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2 [J]. ACS Nano, 2011, 5(12): 9934-9938. |
6 | Yousefi A, Hadi-Vencheh A. Resiliency and reliability of the power grid in the time of COVID-19: an integrated ABC-K-means model for optimal positioning of repair crew[J]. Electric Power Systems Research, 2023, 216: 109022. |
7 | Zeng H C. Integrated nanocatalysts[J]. Accounts of Chemical Research, 2013, 46(2): 226-235. |
8 | Zhan G W, Zeng H C. Integrated nanocatalysts with mesoporous silica/silicate and microporous MOF materials[J]. Coordination Chemistry Reviews, 2016, 320: 181-192. |
9 | Yang X Y, Chen L H, Li Y, et al. Hierarchically porous materials: synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
10 | Sun M H, Gao S S, Hu Z Y, et al. Boosting molecular diffusion following the generalized Murray's law by constructing hierarchical zeolites for maximized catalytic activity[J]. National Science Review, 2022, 9(12): 236 . |
11 | Zhou H, Fan T X, Zhang D. Biotemplated materials for sustainable energy and environment: current status and challenges[J]. ChemSusChem, 2011, 4(10): 1344-1387. |
12 | Zan G T, Wu Q S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures[J]. Advanced Materials, 2016, 28(11): 2099-2147. |
48 | Tian K, Wang X X, Li H Y, et al. Lotus pollen derived 3-dimensional hierarchically porous NiO microspheres for NO2 gas sensing[J]. Sensors and Actuators B: Chemical, 2016, 227: 554-560. |
49 | Wei L, Tian K A, Zhang X Y, et al. 3D porous hierarchical microspheres of activated carbon from nature through nanotechnology for electrochemical double-layer capacitors[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6463-6472. |
50 | Zhu W J, Huang H, Zhang W K, et al. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries[J]. Electrochimica Acta, 2015, 152: 286-293. |
51 | Hall S R, Swinerd V M, Newby F N, et al. Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains[J]. Chemistry of Materials, 2006, 18(3): 598-600. |
52 | Yang X H, Xu B, Zhang X H, et al. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 7228-7233. |
53 | 蔡中杰, 田盼, 黄忠亮, 等. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679. |
Cai Z J, Tian P, Huang Z L, et al. Preparation of Cu/ZnO nanocatalysts based on bio-templates for CO2 hydrogenation[J]. CIESC Journal, 2021, 72(7): 3668-3679. | |
54 | Tian P, Cai Z J, Zhan G W, et al. Preparation of supported In2O3/Pd nanocatalysts using natural pollen as bio-templates for CO2 hydrogenation to methanol: effect of acid-etching on template[J]. Molecular Catalysis, 2021, 516: 1-12. |
55 | Jiang B, Huang M Z, Cai D R, et al. Fabrication of Pt/Co3O4 nanocatalysts based on pollen template for low-temperature CO oxidation[J]. Catalysis Communications, 2023, 174: 106597. |
56 | 彭文怡, 陈慧. 稻壳综合利用[J]. 粮食与油脂, 2014, 27(9): 17-19. |
Peng W Y, Chen H. Comprehensive utilization of paddy hull[J]. Cereals & Oils, 2014, 27(9): 17-19. | |
57 | Liou T H. Preparation and characterization of nano-structured silica from rice husk[J]. Materials Science and Engineering: A, 2004, 364(1/2): 313-323. |
13 | Zhao J K, Ge S S, Liu L R, et al. Microwave solvothermal fabrication of zirconia hollow microspheres with different morphologies using pollen templates and their dye adsorption removal[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 231-241. |
14 | Li W, Wang K C, Zhan G W, et al. Hydrogenation of CO2 to dimethyl ether over tandem catalysts based on biotemplated hierarchical ZSM-5 and Pd/ZnO[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 14058-14070. |
15 | Ronan K, Kannan M B. Novel sustainable route for synthesis of hydroxyapatite biomaterial from biowastes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2237-2245. |
16 | Huang H L, Dai J J, Liu X B, et al. Waste eggshell with naturally-functionalized sulfonic groups as excellent support for loading Pd and Ag nanoparticles towards enhanced 1,3 - butadiene hydrogenation [J]. Molecular Catalysis, 2021, 510: 111689. |
17 | Long L, Pei R, Liu Y, et al. 3D printing of recombinant Escherichia coli/Au nanocomposites as agitating paddles towards robust catalytic reduction of 4-nitrophenol[J]. Journal of Hazardous Materials, 2022, 423: 126983. |
18 | Tian X Y, He W, Cui J J, et al. Mesoporous zirconium phosphate from yeast biotemplate[J]. Journal of Colloid and Interface Science, 2010, 343(1): 344-349. |
19 | Kim I H, Kim M-Y, Cheong M S, et al. RNA-mediated metal-metal bond formation in the hexagonal Pd nanoparticle synthesis is not influenced by 5'-thiolation of RNA[J]. Bulletin of the Korean Chemical Society, 2011, 32(2): 722-724. |
20 | Graczyk A, Pawlowska R, Chworos A. Gold nanoparticles as carriers for functional RNA nanostructures[J]. Bioconjugate Chemistry, 2021, 32(8): 1667-1674. |
21 | Zhou T T, Qi X F, Ma Y J, et al. Multichanneled hierarchical porous nanocomposite CuO/carbonized butterfly wing and its excellent catalytic performance for thermal decomposition of ammonium perchlorate[J]. Applied Organometallic Chemistry, 2020, 34(8): e5730. |
22 | Liu Y Y, Zhang X, Wu B W, et al. Preparation of ZnO/Co3O4 hollow microsphere by pollen-biological template and its application in photocatalytic degradation[J]. ChemistrySelect, 2019, 4(43): 12445-12454. |
23 | Lin Y Z, Ji L, Zhang D Y, et al. The synthesis of biotemplate-based Bi2WO6/TiO2 composite photocatalyst for degradation of microcystin[J]. International Journal of Applied Ceramic Technology, 2021, 18: 2045-2063. |
24 | Nawaz A. Composite of natural bamboo (Dendrocalamus strictus) and TiO2: its photocatalytic potential in the degradation of methylene blue under the direct irradiation of solar light[J]. Research on Chemical Intermediates, 2020, 46(5): 2731-2747. |
58 | Pastor A, Balbuena J, Cruz-Yusta M, et al. ZnO on rice husk: a sustainable photocatalyst for urban air purification[J]. Chemical Engineering Journal, 2019, 368: 659-667. |
59 | Weng W, Wang S B, Xiao W, et al. Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction[J]. Advanced Materials, 2020, 32(29): 2001560. |
60 | Deng M, Zhang G Y, Zeng Y, et al. Simple process for synthesis of layered sodium silicates using rice husk ash as silica source[J]. Journal of Alloys and Compounds, 2016, 683: 412-417. |
61 | 李雯, 詹国武, 黄加乐, 等. 基于金属有机骨架和稻谷壳前体构筑ZnZrO x &bio-SAPO-34双功能催化剂及CO2加氢制低碳烯烃[J]. 化工进展, 2022, 41(3): 1298-1308. |
Li W, Zhan G W, Huang J L, et al. Synthesis of ZnZrO x &bio-SAPO-34 bifunctional catalysts derived from metal organic frameworks and rice husk template for CO2 hydrogenation to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1298-1308. | |
62 | Tian P, Zhan G W, Tian J, et al. Direct CO2 hydrogenation to light olefins over ZnZrO x mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template[J]. Applied Catalysis B: Environmental, 2022, 315: 121572. |
63 | 宋苗苗, 郭梅婷, 蔡东仁, 等. 基于稻谷壳模板制备层状硅酸盐催化剂用于CO2加氢反应[J]. 化学反应工程与工艺, 2022, 38(4): 318-328, 347. |
Song M M, Guo M T, Cai D R, et al. Preparation of phyllosilicate catalysts using rice husk as template for CO2 hydrogenation[J]. Chemical Reaction Engineering and Technology, 2022, 38(4): 318-328, 347. | |
64 | Xie D, Xia X H, Tang W J, et al. Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage[J]. Journal of Materials Chemistry A, 2017, 5: 7578-7585. |
65 | Wang T C, Chang L J, Hatton B, et al. Preparation and hydrophobicity of biomorphic ZnO/carbon based on a lotus-leaf template[J]. Materials Science and Engineering: C, 2014, 43: 310-316. |
66 | 刘洋. 生物模板法制备二氧化钛及其选择性加氢催化性能研究[D]. 厦门:厦门大学, 2018. |
Liu Y. Bio-template synthesis of TiO2 and its catalytic performence of selective hydrogenation[D]. Xiamen: Xiamen University, 2018. | |
25 | Qin Z, Sun H, Tang Y N, et al. Bio-inspired hierarchical assembly of Au/ZnO decorated carbonized spinach leaves with enhanced photocatalysis performance[J]. Journal of Alloys and Compounds, 2020, 829: 154393. |
26 | Zhang X Y, He X S, Kang Z W, et al. Waste eggshell-derived dual-functional CuO/ZnO/eggshell nanocomposites: (photo)catalytic reduction and bacterial inactivation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15762-15771. |
27 | Piszter G, Kertész K, Nagy G, et al. Spectral tuning of biotemplated ZnO photonic nanoarchitectures for photocatalytic applications[J]. Royal Society Open Science, 2022, 9(7): 220090. |
28 | Tian J L, Wu S, Liu S X, et al. Photothermal enhancement of highly efficient photocatalysis with bioinspired thermal radiation balance characteristics[J]. Applied Surface Science, 2022, 592: 153304. |
29 | Sun J Q, Yu S S, Cui Z H, et al. Synthesis, characterization, and photocatalytic antibacterial activities of porous Ce-doped TiO2 microspheres using pine pollen as novel biotemplates[J]. Journal of Materials Science, 2022, 57: 15276-15297. |
30 | Liao Y, Qiu Y F, Wang Y J, et al. Cowhide collagen fibers as biotemplates for preparation of fibrous S O 4 2 - /ZrO2-NiO solid acid catalyst and their application in esterfication[J]. Revue Roumaine de Chimie, 2018, 63: 911-918. |
31 | Wu B W, Shan C C, Zhang X, et al. CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants[J]. Applied Surface Science, 2021, 543: 148677. |
32 | Wu Q, Liu X C, Hou S, et al. Biotemplate synthesis and photocatalysis performance of multilayer porous ZnWO4 nano-photocatalyst with rose petals as template[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127459. |
33 | Wang P C, Yao K, Zhu J, et al. Preparation, catalytic performance and theoretical study of porous sulfated binary metal oxides shell ( S O 4 2 - /M1 x O y -M2 x O y ) using pollen grain templates[J]. Catalysis Communications, 2013, 39: 90-95. |
34 | Yu J, Lu L, Li J, et al. Biotemplated hierarchical porous-structure of ZnAl-LDH/ZnCo2O4 composites with enhanced adsorption and photocatalytic performance[J]. RSC Advances, 2016, 6(16): 12797-12808. |
35 | 马欢, 刘伟伟, 朱苏文, 等. 基于芭蕉叶分级结构的TiO2材料的制备及其吸附-光催化性能的研究[J]. 化学学报, 2012, 70(22): 2353-2358. |
Ma H, Liu W W, Zhu S W, et al. Biotemplated hierarchical TiO2 derived from banana leaf and its adsorption-photocatalytic performance[J]. Acta Chimica Sinica, 2012, 70(22): 2353-2358. | |
36 | Zhou H, Li X F, Fan T X, et al. Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis[J]. Advanced Materials, 2010, 22(9): 951-956. |
67 | Song P, Zhang H H, Han D, et al. Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties[J]. Sensors and Actuators B: Chemical, 2014, 196: 140-146. |
68 | Tian J A, Wang L, Qi L X, et al. Pt nanoparticles embedded in KOH-activated soybean straw as an efficient catalyst toward benzene oxidation[J]. Industrial & Engineering Chemistry Research, 2021, 60(9): 3561-3571. |
69 | Cook G, Timms P L, Göltner-Spickermann C. Exact replication of biological structures by chemical vapor deposition of silica[J]. Angewanddte Chemie International Edition, 2003, 42(5): 557-559. |
70 | Wu L P, Wang W L, Zhang W, et al. Optical performance study of gyroid-structured TiO2 photonic crystals replicated from natural templates using a sol-gel method[J]. Advanced Optical Materials, 2018, 6(21): 1800064. |
71 | Zhong G H, Liu D X. Biomorphic CdS/Cd photocatalyst derived from butterfly wing for efficient hydrogen evolution reaction[J]. Advanced Materials Interfaces, 2022, 9(12): 2102423. |
72 | Liu S X, He J H. Facile fabrication of porous titania microtube arrays by replication of human hair[J]. Journal of the American Ceramic Society, 2005, 88(12): 3513-3514. |
73 | Milovac D, WWeigand I, KKovacic M, et al. Highly porous hydroxyapatite derived from cuttlefish bone as TiO2 catalyst support[J]. Processing and Application of Ceramics, 2018, 12(2): 136-142. |
74 | Cao J, Su H L, Chen J J, et al. Well-aligned ZnO nanorod arrays derived from 2D photonic crystals within peacock feathers[J]. CrystEngComm, 2012, 14(16): 5262-5266. |
75 | Nasrollahzadeh M, Sajadi S M, Hatamifard A. Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites[J]. Applied Catalysis B: Environmental, 2016, 191: 209-227. |
76 | Ding Q, Kang Z W, Cao L P, et al. Conversion of waste eggshell into difunctional Au/CaCO3 nanocomposite for 4-nitrophenol electrochemical detection and catalytic reduction[J]. Applied Surface Science, 2020, 510: 145526. |
77 | Su H L, Han J E, Wang N, et al. In situ synthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique[J]. Smart Materials and Structures, 2008, 17(1): 015045. |
78 | Sabu U, Shyam Kumar C N, Logesh G, et al. On the formation of α-alumina single crystal platelets through eggshell membrane bio-templating[J]. Scripta Materialia, 2021, 195: 113716. |
79 | Li Y L, Zhou J, Fan Y D, et al. Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes[J]. Chemical Physics Letters, 2017, 689: 142-147. |
80 | Zhang Y, Dong Y X, Zhou J H, et al. Application of plant viruses as a biotemplate for nanomaterial fabrication[J]. Molecules, 2018, 23(9): 2311. |
81 | Ullah M W, Shi Z J, Shi X D, et al. Microbes as structural templates in biofabrication: study of surface chemistry and applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11163-11175. |
82 | Zhou H, Fan T X, Ding J A, et al. Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity[J]. Optics Express, 2012, 20(S2): A340. |
83 | Liu Y, Pei R, Huang Z L, et al. Green immobilization of CdS-Pt nanoparticles on recombinant Escherichia coli boosted by overexpressing cysteine desulfurase for photocatalysis application[J]. Bioresource Technology Reports, 2021, 16: 100823. |
84 | Yu Q Q, Sasaki K, Hirajima T. Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li+ recovery[J]. Journal of Hazardous Materials, 2013, 262: 38-47. |
85 | Douglas T, Young M. Host-guest encapsulation of materials by assembled virus protein cages[J]. Nature, 1998, 393(6681): 152-155. |
86 | Rothenstein D, Facey S J, Ploss M, et al. Mineralization of gold nanoparticles using tailored M13 phages[J]. Bioinspired Biomimetic and Nanobiomaterials, 2013, 2(4): 173-185. |
87 | Khan A A, Fox E K, Górzny M Ł, et al. pH control of the electrostatic binding of gold and iron oxide nanoparticles to tobacco mosaic virus[J]. Langmuir, 2013, 29(7): 2094-2098. |
88 | Pillai C K S, Nandi U S. Binding of gold ( Ⅲ ) with DNA[J]. Biopolymers, 1973, 12(6): 1431-1435. |
89 | 杨涛, 杨超, 童洲. 在DNA网络模板上原位合成金纳米颗粒[J]. 微纳电子技术, 2013, 50(8): 479-486, 493. |
Yang T, Yang C, Tong Z. In situ synthesis gold nanoparticles on DNA network templates[J]. Micronanoelectronic Technology, 2013, 50(8): 479-486, 493. | |
90 | Shang Y X, Li N, Liu S B, et al. Site-specific synthesis of silica nanostructures on DNA origami templates[J]. Advanced Materials, 2020, 32(21): 2000294. |
91 | 许忠豪. 酶@MOF的制备及其在处理有机污染物中的应用[D]. 大连:大连理工大学, 2020. |
Xu Z H. Preparation of enzyme@MOFs composite and its application in treatment of organic pollutants[D]. Dalian: Dalian University of Technology, 2020. | |
92 | Xu S A, Wang J R, Wei Y A, et al. In situ one-pot synthesis of Fe2O3@BSA core-shell nanoparticles as enhanced T1-weighted magnetic resonance imagine contrast agents[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 56701-56711. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[7] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[8] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[9] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[10] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[11] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[12] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[13] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[14] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[15] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 784
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 674
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||