CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5443-5454.DOI: 10.11949/0438-1157.20210761
• Reviews and monographs • Previous Articles Next Articles
Jinjin LI1(),You WU2,Yinning ZHOU1,Zhenghong LUO1()
Received:
2021-06-07
Revised:
2021-08-20
Online:
2021-11-12
Published:
2021-11-05
Contact:
Jinjin LI,Zhenghong LUO
通讯作者:
李锦锦,罗正鸿
作者简介:
李锦锦(1987—),女,博士,助理研究员,基金资助:
CLC Number:
Jinjin LI, You WU, Yinning ZHOU, Zhenghong LUO. Progress in preparation and application of amphiphilic block copolymer stabilized high internal phase emulsion templates[J]. CIESC Journal, 2021, 72(11): 5443-5454.
李锦锦, 吴优, 周寅宁, 罗正鸿. 两亲嵌段共聚物基高内相乳液模板的制备与应用研究进展[J]. 化工学报, 2021, 72(11): 5443-5454.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Synthesis of polyHIPE from stable HIPE templating[12]: HIPE stabilizers (a); emulsification method of HIPE (b); schematic representation for the preparation of polyHIPE and its interconnected porous structure (c)
Fig.2 Pluronic triblock copolymer: molecular structure of the copolymer (left) and the pluronic grid (right; colour code: physical state of copolymers under ambient conditions, green — liquid, red — paste, orange — flake) [25-26]
Fig.3 Preparation of BCP-based polyHIPEs and their amphiphilic uptakes[35]: a scheme illustrating the synthesis of polyHIPE through the polymerization of a reactive BCP in an O/W emulsion (a); typical porous structure (SEM) (b); comparison of dry polyHIPE sample with samples that underwent equilibrium swelling in a liquid (c)
Fig.4 Mechanism of di-block copolymer based polyHIPE surface functionalization[41]: optical micrograph of HIPE (a); SEM image of polyHIPE (b); HIPEs stabilized by di-block copolymers as surfactants can be surface functionalized through physical or chemical entanglement compared to low molecular weight surfactants (c)
Fig.7 Significance of the interconnectivity on scaffold design[54]: scaffolds that are implanted to the defect site (a); difference of cell penetration in the scaffold with low and interconnectivity (b); SEM image of the PCL-polyHIPE that shows tissue infiltration through the interconnected pores of the scaffold (c)
1 | Tan L, Tan B. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46(11): 3322-3356. |
2 | de France K J, Xu F, Hoare T. Structured macroporous hydrogels: progress, challenges, and opportunities[J]. Advanced Healthcare Materials, 2018, 7(1): 1700927. |
3 | Wu J L, Xu F, Li S M, et al. Porous polymers as multifunctional material platforms toward task-specific applications[J]. Advanced Materials, 2019, 31(4): 1802922. |
4 | Zhang A, Bai H, Li L. Breath figure: a nature-inspired preparation method for ordered porous films[J]. Chemical Reviews, 2015, 115(18): 9801-9868. |
5 | Li C, Li Q, Kaneti Y V, et al. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems[J]. Chemical Society Reviews, 2020, 49(14): 4681-4736. |
6 | Silverstein M S. PolyHIPEs: recent advances in emulsion-templated porous polymers[J]. Progress in Polymer Science, 2014, 39(1): 199-234. |
7 | Zhang H F, Cooper A I. Synthesis and applications of emulsion-templated porous materials[J]. Soft Matter, 2005, 1(2): 107. |
8 | Zhang T, Sanguramath R A, Israel S, et al. Emulsion templating: porous polymers and beyond[J]. Macromolecules, 2019, 52(15): 5445-5479. |
9 | Cameron N R, Sherrington D C. High internal phase emulsions (HIPEs) — structure, properties and use in polymer preparation[M]//Biopolymers Liquid Crystalline Polymers Phase Emulsion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996: 163-214. |
10 | Silverstein M S. Emulsion-templated porous polymers: a retrospective perspective[J]. Polymer, 2014, 55(1): 304-320. |
11 | Silverstein M S. Emulsion-templated polymers: contemporary contemplations[J]. Polymer, 2017, 126: 261-282. |
12 | Moon S, Kim J Q, Kim B Q, et al. Processable composites with extreme material capacities: toward designer high internal phase emulsions and foams[J]. Chemistry of Materials, 2020, 32(11): 4838-4854. |
13 | Kramer S, Cameron N R, Krajnc P. Porous polymers from high internal phase emulsions as scaffolds for biological applications[J]. Polymers, 2021, 13(11): 1786. |
14 | Pulko I, Krajnc P. High internal phase emulsion templating - a path to hierarchically porous functional polymers[J]. Macromolecular Rapid Communications, 2012, 33(20): 1731-1746. |
15 | Kimmins S D, Cameron N R. Functional porous polymers by emulsion templating: recent advances[J]. Advanced Functional Materials, 2011, 21(2): 211-225. |
16 | Cameron N R, Sherrington D C, Albiston L, et al. Study of the formation of the open-cellular morphology of poly(styrene/divinylbenzene) polyHIPE materials by cryo-SEM[J]. Colloid and Polymer Science, 1996, 274(6): 592-595. |
17 | Menner A, Bismarck A. New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why polyHIPEs have an interconnected pore network structure[J]. Macromolecular Symposia, 2006, 242(1): 19-24. |
18 | Luo Y W, Wang A N, Gao X. Pushing the mechanical strength of polyHIPEs up to the theoretical limit through living radical polymerization[J]. Soft Matter, 2012, 8(6): 1824-1830. |
19 | Luo Y W, Wang A N, Gao X. Miniemulsion template polymerization to prepare a sub-micrometer porous polymeric monolith with an inter-connected structure and very high mechanical strength[J]. Soft Matter, 2012, 8(29): 7547. |
20 | Ikem V, Menner A, Bismarck A. High internal phase emulsions stabilized solely by functionalized silica particles[J]. Angewandte Chemie International Edition, 2009, 48(4): 632. |
21 | Yang L, Liu Y, Filipe C D M, et al. Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyHIPE foam for pressure sensing[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4318-4327. |
22 | Jiao B, Shi A M, Wang Q, et al. High-internal-phase Pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications[J]. Angewandte Chemie, 2018, 130(30): 9418-9422. |
23 | Zhu H, Lei L, Li B G, et al. Development of novel materials from polymerization of Pickering emulsion templates[M]//Pauer W. Polymer Reaction Engineering of Dispersed Systems. Advances in Polymer Science. Cham: Springer, 2017, 280: 101-119. |
24 | Ikem V O, Menner A, Horozov T S, et al. Highly permeable macroporous polymers synthesized from Pickering medium and high internal phase emulsion templates[J]. Advanced Materials, 2010, 22(32): 3588-3592. |
25 | Alexandridis P, Alan Hatton T. Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96(1/2): 1-46. |
26 | Pitto-Barry A, Barry N P E. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances[J]. Polym. Chem., 2014, 5(10): 3291-3297. |
27 | Utroša P, Onder O C, Žagar E, et al. Shape memory behavior of emulsion-templated poly(ε-caprolactone) synthesized by organocatalyzed ring-opening polymerization[J]. Macromolecules, 2019, 52(23): 9291-9298. |
28 | Parın F N, Mert E H. Hydrophilic closed-cell macroporous foam preparation by emulsion templating[J]. Materials Letters, 2020, 277: 128287. |
29 | Jurjevec S, Debuigne A, Žagar E, et al. An environmentally benign post-polymerization functionalization strategy towards unprecedented poly(vinylamine) polyHIPEs[J]. Polymer Chemistry, 2021, 12(8): 1155-1164. |
30 | Zhang T, Gui H G, Xu Z G, et al. Hydrophobic polyurethane polyHIPEs templated from mannitol within nonaqueous high internal phase emulsions for oil spill recovery[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2019, 57(12): 1315-1321. |
31 | Makrygianni M, Christofili A, Deimede V. Emulsion-templated macroporous ammonium based polymers: synthesis and dye adsorption study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125634. |
32 | Jurjevec S, Žagar E, Kovačič S. Functional macroporous amphoteric polyelectrolyte monoliths with tunable structures and properties through emulsion-templated synthesis[J]. Journal of Colloid and Interface Science, 2020, 575: 480-488. |
33 | Zhang T, Li X M, Wang W J, et al. Interface-initiated polymerization enables one-pot synthesis of hydrophilic and oleophobic foams through emulsion templating[J]. Macromolecular Rapid Communications, 2019, 40(21): 1900288. |
34 | Jiang B, Zhang T, Xu Z G, et al. Wet-spun porous fibers from high internal phase emulsions: continuous preparation and high stretchability[J]. Journal of Polymer Science, 2021, 59(11): 1055-1064. |
35 | Zhang T, Silverstein M S. Microphase-separated macroporous polymers from an emulsion-templated reactive triblock copolymer[J]. Macromolecules, 2018, 51(10): 3828-3835. |
36 | Zhang T, Silverstein M S. Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer[J]. Polymer, 2019, 168: 146-154. |
37 | Wang Y K, Wan X Z, He J X, et al. A one-step fabrication and modification of HIPE-templated fluoro-porous polymer using PEG-b-PHFBMA macrosurfactant[J]. Journal of Materials Science, 2020, 55(12): 4970-4986. |
38 | Azhar U, Zong C Y, Wan X Z, et al. Methyl methacrylate HIPE solely stabilized by fluorinated di-block copolymer for fabrication of highly porous and interconnected polymer monoliths[J]. Chemistry - A European Journal, 2018, 24(45): 11619-11626. |
39 | Azhar U, Yaqub R, Li H T, et al. Di-block copolymer stabilized methyl methacrylate based polyHIPEs: influence of hydrophilic and hydrophobic co-monomers on morphology, wettability and thermal properties[J]. Arabian Journal of Chemistry, 2020, 13(2): 3801-3816. |
40 | Wu Y, Zhou Y N, Xu Q J, et al. Porous PS- and PMMA-based polymeric monoliths prepared by PEO-PS block copolymers stabilized high internal phase emulsion templates[J]. Materials Today Communications, 2021, 26: 101962. |
41 | Viswanathan P, Johnson D W, Hurley C, et al. 3D surface functionalization of emulsion-templated polymeric foams[J]. Macromolecules, 2014, 47(20): 7091-7098. |
42 | Mathieu K, Jérôme C, Debuigne A. Influence of the macromolecular surfactant features and reactivity on morphology and surface properties of emulsion-templated porous polymers[J]. Macromolecules, 2015, 48(18): 6489-6498. |
43 | Azhar U, Huyan C X, Wan X Z, et al. A cationic fluorosurfactant for fabrication of high-performance fluoropolymer foams with controllable morphology[J]. Materials & Design, 2017, 124: 194-202. |
44 | Cameron N R. High internal phase emulsion templating as a route to well-defined porous polymers[J]. Polymer, 2005, 46(5): 1439-1449. |
45 | Li Z C, Liu H R, Zeng L, et al. The facile synthesis of PMMA polyHIPEs with highly interconnected porous microstructures[J]. Journal of Materials Science, 2016, 51(19): 9005-9018. |
46 | Lei M, Peng Z H, Dong Q, et al. A novel capsular tension ring as local sustained-release carrier for preventing posterior capsule opacification[J]. Biomaterials, 2016, 89: 148-156. |
47 | Khodabandeh A, Arrua R D, Mansour F R, et al. PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science[J]. Scientific Reports, 2017, 7: 7847. |
48 | Gui H G, Guan G W, Zhang T, et al. Microphase-separated, hierarchical macroporous polyurethane from a nonaqueous emulsion-templated reactive block copolymer[J]. Chemical Engineering Journal, 2019, 365: 369-377. |
49 | Li W W, Yu Y, Lamson M, et al. PEO-based star copolymers as stabilizers for water-in-oil or oil-in-water emulsions[J]. Macromolecules, 2012, 45(23): 9419-9426. |
50 | Horowitz R, Lamson M, Cohen O, et al. Highly efficient and tunable miktoarm stars for HIPE stabilization and polyHIPE synthesis[J]. Polymer, 2021, 217: 123444. |
51 | Li C H, Weng S Q, Jin M, et al. Dendritic macrosurfactant assembly for physical functionalization of HIPE-templated polymers[J]. Polymers, 2020, 12(4): 779. |
52 | Feng Y Y, Wan Y J, Jin M, et al. Large-scale preparation of a 3D patchy surface with dissimilar dendritic amphiphiles[J]. Soft Matter, 2018, 14(6): 1043-1049. |
53 | Li C H, Jin M, Wan D C. Evolution of a radical-triggered polymerizing high internal phase emulsion into an open-cellular monolith[J]. Macromolecular Chemistry and Physics, 2019, 220(16): 1900216. |
54 | Aldemir D B, Claeyssens F. Basic principles of emulsion templating and its use as an emerging manufacturing method of tissue engineering scaffolds[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 875. |
55 | Zhu Y F, Wang W B, Yu H, et al. Preparation of porous adsorbent via Pickering emulsion template for water treatment: a review[J]. Journal of Environmental Sciences, 2020, 88: 217-236. |
56 | Taylor-Pashow K M L, Pribyl J G. PolyHIPEs for separations and chemical transformations: a review[J]. Solvent Extraction and Ion Exchange, 2019, 37(1): 1-26. |
57 | Zhang T, Silverstein M S. Highly porous, emulsion-templated, zwitterionic hydrogels: amplified and accelerated uptakes with enhanced environmental sensitivity[J]. Polymer Chemistry, 2018, 9(25): 3479-3487. |
58 | Gui H G, Zhang T, Guo Q P. Nanofibrous, emulsion-templated syndiotactic polystyrenes with superhydrophobicity for oil spill cleanup[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 36063-36072. |
59 | Li X M, Zhang T, Xu Z G, et al. Amphiphobic polyHIPEs with pH-triggered transition to hydrophilicity–oleophobicity for the controlled removal of water from oil–water mixtures[J]. Polymer Chemistry, 2020, 11(43): 6935-6943. |
60 | Yang X C, Yin Z Q, Zhang X Y, et al. Fabrication of emulsion-templated macroporous poly(ε-caprolactone) towards highly effective and sustainable oil/water separation[J]. Polymer, 2020, 204: 122852. |
61 | Golub D, Krajnc P. Emulsion templated hydrophilic polymethacrylates. Morphological features, water and dye absorption[J]. Reactive and Functional Polymers, 2020, 149: 104515. |
62 | Zhu J J, Wu L B, Bu Z Y, et al. Synthesis and CO2 capture behavior of porous cross-linked polymers containing pendant triazole groups[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10155-10163. |
63 | Zhu J J, Wu L B, Bu Z Y, et al. Polyethylenimine-grafted HKUST-type MOF/PolyHIPE porous composites (PEI@PGD-H) as highly efficient CO2 adsorbents[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4257-4266. |
64 | Ingavle G, Vaidya A, Kale V. Constructing three-dimensional microenvironments using engineered biomaterials for hematopoietic stem cell expansion[J]. Tissue Engineering Part B, Reviews, 2019, 25(4): 312-329. |
65 | Busby W, Cameron N R, Jahoda C A B. Emulsion-derived foams (polyHIPEs) containing poly(ε-caprolactone) as matrixes for tissue engineering[J]. Biomacromolecules, 2001, 2(1): 154-164. |
66 | Yadav A, Pal J, Nandan B, et al. Macroporous scaffolds of cross-linked poly(ɛ-caprolactone) via high internal phase emulsion templating[J]. Polymer, 2019, 176: 66-73. |
67 | Busby W, Cameron N R, Jahoda C A. Tissue engineering matrixes by emulsion templating[J]. Polymer International, 2002, 51(10): 871-881. |
68 | Pérez-García M G, Gutiérrez M C, Mota-Morales J D, et al. Synthesis of biodegradable macroporous poly(l-lactide)/poly(ε-caprolactone) blend using oil-in-eutectic-mixture high-internal-phase emulsions as template[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16939-16949. |
69 | Wang L W, Liu Y J, Bao L, et al. Preparation of acrylamide-based poly-HIPEs with enhanced mechanical strength using PVDBM-b-PEG-emulsified CO2 -in-water emulsions[J]. Journal of Applied Polymer Science, 2018, 135(23): 46346. |
70 | Corti M, Calleri E, Perteghella S, et al. Polyacrylate/polyacrylate-PEG biomaterials obtained by high internal phase emulsions (HIPEs) with tailorable drug release and effective mechanical and biological properties[J]. Materials Science and Engineering: C, 2019, 105: 110060. |
71 | Gui H G, Zhang T, Guo Q P. Closed-cell, emulsion-templated hydrogels for latent heat storage applications[J]. Polymer Chemistry, 2018, 9(29): 3970-3973. |
72 | Zhang T, Xu Z G, Chi H J, et al. Closed-cell, phase change material-encapsulated monoliths from a reactive surfactant-stabilized high internal phase emulsion for thermal energy storage[J]. ACS Applied Polymer Materials, 2020, 2(7): 2578-2585. |
73 | Zhang T, Xu Z G, Li X M, et al. Closed-cell, phase change material-encapsulated, emulsion-templated monoliths for latent heat storage: flexibility and rapid preparation[J]. Applied Materials Today, 2020, 21: 100831. |
74 | Danninger D, Hartmann F, Paschinger W, et al. Stretchable polymerized high internal phase emulsion separators for high performance soft batteries[J]. Advanced Energy Materials, 2020, 10(19): 2000467. |
75 | Stiernet P, Aqil A, Zhu X M, et al. Multicomponent radziszewski emulsion polymerization toward macroporous poly(ionic liquid) catalysts[J]. ACS Macro Letters, 2020, 9(1): 134-139. |
76 | Mravljak R, Bizjak O, Božič B, et al. Flow-through polyHIPE silver-based catalytic reactor[J]. Polymers, 2021, 13(6): 880. |
77 | Foudazi R. HIPEs to polyHIPEs[J]. Reactive and Functional Polymers, 2021, 164: 104917. |
78 | Aldemir D B, Dikici S, Reilly G C, et al. A novel bilayer polycaprolactone membrane for guided bone regeneration: combining electrospinning and emulsion templating[J]. Materials, 2019, 12(16): 2643. |
79 | Li J J, Zhou Y N, Luo Z H, et al. Engineering bicontinuous polymeric monoliths through high internal phase emulsion templating[J]. Materials Today Communications, 2020, 22: 100813. |
80 | Wenger L, Radtke C P, Göpper J, et al. 3D-printable and enzymatically active composite materials based on hydrogel-filled high internal phase emulsions[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 713. |
[1] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[2] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[3] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[4] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[5] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[6] | Wangkai XIANG, Yuanyuan LIU, Ying ZHENG, Pengju PAN. Preparation of medium- and high-molecular-weight poly(glycolic acid) by melt/solid-state polycondensation [J]. CIESC Journal, 2023, 74(2): 933-940. |
[7] | Yuxiao LI, Qingyue WANG, Khak Ho LIM, Xiaohui LI, Erlita MASTAN, Bo PENG, Wenjun WANG. Characterization technique for kinetic coefficients of free radical polymerization [J]. CIESC Journal, 2023, 74(2): 559-570. |
[8] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
[9] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[10] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
[11] | Xuesong WANG, Xiangyu ZENG, Cuimei BO, Shuqi TANG, Chao DONG, Jun LI, Quanling ZHANG, Xiaoming JIN, Shengli YE. Dynamic economic optimal control for PTFE batch polymerization process with free terminal [J]. CIESC Journal, 2022, 73(9): 3973-3982. |
[12] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[13] | Zhemiao YU, Zhi WANG, Menglong SHENG, Guangyu XING, Jixiao WANG. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization [J]. CIESC Journal, 2022, 73(7): 3273-3286. |
[14] | Wentao LI, Huijuan LIN, Hai ZHONG. LiF-rich SEI generated by in-situ gel polymer electrolyte process for lithium metal rechargeable batteries [J]. CIESC Journal, 2022, 73(7): 3240-3250. |
[15] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||