CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3739-3748.DOI: 10.11949/0438-1157.20220625
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Hongxin YANG1(), Xingya LI1, Liang GE1,2(
), Tongwen XU1(
)
Received:
2022-05-05
Revised:
2022-06-01
Online:
2022-09-06
Published:
2022-08-05
Contact:
Liang GE, Tongwen XU
通讯作者:
葛亮,徐铜文
作者简介:
杨宏欣 (1997—),男,硕士研究生,yhx524@mail.ustc.edu.cn
基金资助:
CLC Number:
Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain[J]. CIESC Journal, 2022, 73(8): 3739-3748.
杨宏欣, 李兴亚, 葛亮, 徐铜文. 含哌啶阳离子侧长链型一/二价阴离子选择性分离膜的制备[J]. 化工学报, 2022, 73(8): 3739-3748.
膜名称 | PC-Br/mmol | N-甲基哌啶/mmol | NMP/ml | 理论IEC/(mmol·g-1) |
---|---|---|---|---|
QPC-Pip-60 | 4.71 | 2.83 | 22 | 1.24 |
QPC-Pip-80 | 4.71 | 3.77 | 22 | 1.59 |
QPC-Pip-100 | 4.71 | 4.71 | 22 | 1.91 |
Table 1 The amount of reactants for quaternization reaction
膜名称 | PC-Br/mmol | N-甲基哌啶/mmol | NMP/ml | 理论IEC/(mmol·g-1) |
---|---|---|---|---|
QPC-Pip-60 | 4.71 | 2.83 | 22 | 1.24 |
QPC-Pip-80 | 4.71 | 3.77 | 22 | 1.59 |
QPC-Pip-100 | 4.71 | 4.71 | 22 | 1.91 |
Fig.6 The IEC, water uptake and swelling ratio result of QPC-Pip-x series membranes and the surface resistance and transport number of QPC-Pip-x series membranes and ACS membrane
膜名称 | 抗拉强度/MPa | 断裂伸长率/% |
---|---|---|
QPC-Pip-60 | 32.74 | 9.56 |
QPC-Pip-80 | 30.49 | 12.84 |
QPC-Pip-100 | 29.20 | 14.11 |
Table 2 The tensile strength and elongation of break of QPC-Pip-x series membrane
膜名称 | 抗拉强度/MPa | 断裂伸长率/% |
---|---|---|
QPC-Pip-60 | 32.74 | 9.56 |
QPC-Pip-80 | 30.49 | 12.84 |
QPC-Pip-100 | 29.20 | 14.11 |
膜名称 | 电流密度/(mA·cm-2) | 进料溶液 | Cl-通量/(mol·m-2·h-1) | 选择性 | 文献 |
---|---|---|---|---|---|
PAES-6C-IM | 5 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 1.26 | 7.1 | [ |
PQC76/DSA-0.5 | 5 | 0.2 mol·L-1 NaCl+0.2 mol·L-1 Na2SO4 | 1.80 | 10 | [ |
QPEI/PVA-C10-5 | 20 | 0.05 M NaCl + 0.05 mol·L-1 Na2SO4 | 1.59 | 6.31 | [ |
交联两性AEM | 5 | 0.05 mol·L-1 NaCl + 0.05 mol·L-1 Na2SO4 | 1.33 | 12.5 | [ |
QP-P11-1 | 3.5 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 1.04 | 13 | [ |
CrPsf-3 | 12 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 2.97 | 5.7 | [ |
均相共混-15-AIEM | 2.5 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | — | 21.8 | [ |
CBTS-integrated CCAPMs | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 1.86 | 7.3 | [ |
AMX-LPDA#DBSA | 8 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 2.47 | 1.4 | [ |
(PSS/PAH)5PSS AEM | 1.13 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 0.242 | 7.4 | [ |
QPC-Pip-60 | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 3.24 | 11.6 | 本工作 |
QPC-Pip-80 | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 3.27 | 11.0 | 本工作 |
QPC-Pip-100 | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 3.32 | 10.5 | 本工作 |
Table 3 An overview of the ED performance in Cl-/WO42- system of the monovalent anion permselective membranes in recent literatures
膜名称 | 电流密度/(mA·cm-2) | 进料溶液 | Cl-通量/(mol·m-2·h-1) | 选择性 | 文献 |
---|---|---|---|---|---|
PAES-6C-IM | 5 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 1.26 | 7.1 | [ |
PQC76/DSA-0.5 | 5 | 0.2 mol·L-1 NaCl+0.2 mol·L-1 Na2SO4 | 1.80 | 10 | [ |
QPEI/PVA-C10-5 | 20 | 0.05 M NaCl + 0.05 mol·L-1 Na2SO4 | 1.59 | 6.31 | [ |
交联两性AEM | 5 | 0.05 mol·L-1 NaCl + 0.05 mol·L-1 Na2SO4 | 1.33 | 12.5 | [ |
QP-P11-1 | 3.5 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 1.04 | 13 | [ |
CrPsf-3 | 12 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 2.97 | 5.7 | [ |
均相共混-15-AIEM | 2.5 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | — | 21.8 | [ |
CBTS-integrated CCAPMs | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 1.86 | 7.3 | [ |
AMX-LPDA#DBSA | 8 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 2.47 | 1.4 | [ |
(PSS/PAH)5PSS AEM | 1.13 | 0.05 mol·L-1 NaCl+0.05 mol·L-1 Na2SO4 | 0.242 | 7.4 | [ |
QPC-Pip-60 | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 3.24 | 11.6 | 本工作 |
QPC-Pip-80 | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 3.27 | 11.0 | 本工作 |
QPC-Pip-100 | 10 | 0.1 mol·L-1 NaCl+0.1 mol·L-1 Na2SO4 | 3.32 | 10.5 | 本工作 |
1 | Zaffora A, Culcasi A, Gurreri L, et al. Energy harvesting by waste acid/base neutralization via bipolar membrane reverse electrodialysis[J]. Energies, 2020, 13(20): 5510. |
2 | Al-Amshawee S, Yunus M Y B M, Azoddein A A M, et al. Electrodialysis desalination for water and wastewater: a review[J]. Chemical Engineering Journal 2020, 380: 122231. |
3 | Zhao Y, Tang K, Liu H, et al. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity[J]. Journal of Membrane Science, 2016, 520: 262-271. |
4 | Li C, Wang G, Yu D, et al. Cross-linked anion exchange membranes with hydrophobic side-chains for anion separation[J]. Journal of Membrane Science, 2019, 581: 150-157. |
5 | Ge L, Wu B, Yu D, et al. Monovalent cation perm-selective membranes (MCPMs): new developments and perspectives[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1606-1615. |
6 | Vaselbehagh M, Karkhanechi H, Takagi R, et al. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis — experimental verification of theoretical predictions[J]. Journal of Membrane Science, 2015, 490: 301-310. |
7 | Afsar N U, Li X, Zhu Y, et al. In-situ interfacial polymerization endows surface enrichment of —COOH groups on anion exchange membranes for efficient Cl-/ S O 4 2 - separation[J]. Journal of Polymer Science, 2021.DOI:10.1002/pol.20210735 . |
8 | Zhao Y, Zhu J, Ding J, et al. Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity[J]. Journal of Membrane Science, 2018, 548: 81-90. |
9 | Li J, Yuan S, Wang J, et al. Mussel-inspired modification of ion exchange membrane for monovalent separation[J]. Journal of Membrane Science, 2018, 553: 139-150. |
10 | Lejarazu-Larrañaga A, Zhao Y, Molina S, et al. Alternating current enhanced deposition of a monovalent selective coating for anion exchange membranes with antifouling properties[J]. Separation and Purification Technology, 2019, 229: 115807. |
11 | Fujimoto C, Kim D S, Hibbs M, et al. Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells[J]. Journal of Membrane Science, 2012, 423: 438-449. |
12 | Mohanty A D, Tignor S E, Krause J A, et al. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications[J]. Macromolecules, 2016, 49(9): 3361-3372. |
13 | Miyanishi S, Yamaguchi T. Analysis of the degradation mechanism of the polyarylene ether anion-exchange membrane for alkaline fuel cell and water-splitting cell applications[J]. New Journal of Chemistry, 2017, 41(16): 8036-8044. |
14 | Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel cells, 2005, 5(2): 187-200. |
15 | Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: a review[J]. Journal of Membrane Science, 2011, 377(1/2): 1-35. |
16 | Couture G, Alaaeddine A, Boschet F, et al. Polymeric materials as anion-exchange membranes for alkaline fuel cells [J]. Progress in Polymer Science, 2011, 36(11): 1521-1557. |
17 | Diaz A M, Zolotukhin M G, Fomine S, et al. A novel, one-pot synthesis of novel 3F, 5F, and 8F aromatic polymers [J]. Macromolecular Rapid Communications, 2007, 28(2): 183-187. |
18 | Lee W H, Mohanty A D, Bae C. Fluorene-based hydroxide ion conducting polymers for chemically stable anion exchange membrane fuel cells[J]. ACS Macro Letters, 2015, 4(4): 453-457. |
19 | Hibbs M R, Fujimoto C H, Cornelius C J. Synthesis and characterization of p o l y ( p h e n y l e n e ) - b a s e d anion exchange membranes for alkaline fuel cells[J]. Macromolecules, 2009, 42(21): 8316-8321. |
20 | Rao A, Thankamony R L, Kim H J, et al. Imidazolium-functionalized poly(arylene ether sulfone) block copolymer as an anion exchange membrane for alkaline fuel cell[J]. Polymer, 2013, 54(1): 111-119. |
21 | Xue J, Liu X, Zhang J, et al. Poly(phenylene oxide)s incorporating N-spirocyclic quaternary ammonium cation/cation strings for anion exchange membranes[J]. Journal of Membrane Science, 2019, 595: 117507. |
22 | Wang X, Lin C, Gao Y, et al. Anion exchange membranes with twisted poly(terphenylene) backbone: effect of the N-cyclic cations[J]. Journal of Membrane Science, 2021, 635: 119525. |
23 | Zhang F, Li T, Chen W, et al. Electron-donating C-NH2 link backbone for highly alkaline and mechanical stable anion exchange membranes[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10490-10499. |
24 | Tanaka N, Sawada S, Yamaki T, et al. Improvement of HI concentration performance for hydrogen production iodine-sulfur process using crosslinked cation-exchange membrane[J]. Chemical Engineering Science, 2021, 237: 116575. |
25 | Du X, Wang Z, Zhang H, et al. Prepared poly(aryl piperidinium) anion exchange membranes for acid recovery to improve dialysis coefficients and selectivity[J]. Journal of Membrane Science, 2021, 619: 118805. |
26 | Chen N, Wang H H, Kim S P, et al. Poly (fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells[J]. Nature Communications, 2021, 12(1): 2367. |
27 | 杨珊珊, 姚宇洋, 董云迪, 等. 基于二苯并-18-冠-6基体改性的K+选择性离子交换膜的制备及性能研究[J]. 化工学报, 2022, 73(4): 1781-1793. |
Yang S S, Yao Y Y, Dong Y D, et al. Preparation and performance of ion exchange membrane with K+ selectivity based on dibenzo-18-crown-6 modification[J]. CIESC Journal, 2022, 73(4): 1781-1793. | |
28 | Olvera L I, Guzmán-Gutiérrez M T, Zolotukhin M G, et al. Novel high molecular weight aromatic fluorinated polymers from one-pot, metal-free step polymerizations[J]. Macromolecules, 2013, 46(18): 7245-7256. |
29 | Zhu Y, Ding L, Liang X, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells[J]. Energy & Environmental Science, 2018, 11(12): 3472- 3479. |
30 | Irfan M, Ge L, Wang Y, et al. Hydrophobic side chains impart anion exchange membranes with high monovalent-divalent anion selectivity in electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4429-4442. |
31 | Belloň T, Polezhaev P, Vobecká L, et al. Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement[J]. Journal of Membrane Science, 2019, 572: 607-618. |
32 | Xiao X, Shehzad M A, Yasmin A, et al. Anion permselective membranes with chemically-bound carboxylic polymer layer for fast anion separation[J]. Journal of Membrane Science, 2020, 614: 118553. |
33 | Li M, Li W, Zhang X, et al. Polyvinyl alcohol-based monovalent anion selective membranes with excellent permselectivity in selectrodialysis[J]. Journal of Membrane Science, 2021, 620: 118889. |
34 | Liao J, Yu X, Pan N, et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications[J]. Journal of Membrane Science, 2019, 577: 153-164. |
35 | Nightingale J E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. |
36 | Liao J, Yu X, Chen Q, et al. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: investigating the effect of hydrophobic alkyl spacer length[J]. Journal of Membrane Science, 2020, 599: 117818. |
37 | Zhang H, Ding R, Zhang Y, et al. Stably coating loose and electronegative thin layer on anion exchange membrane for efficient and selective monovalent anion transfer[J]. Desalination, 2017, 410: 55-65. |
38 | Goel P, E B, Mandal P, et al. Di-quaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis[J]. Separation and Purification Technology, 2021, 276: 119361. |
39 | Liao J, Chen Q, Pan N, et al. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis[J]. Separation and Purification Technology, 2020, 242: 116793. |
40 | Ahmad M, Tang C, Yang L, et al. Layer-by-layer modification of aliphatic polyamide anion-exchange membranes to increase Cl-/ S O 4 2 - selectivity[J]. Journal of Membrane Science, 2019, 578: 209-219. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[8] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[10] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[11] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[12] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[13] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[14] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[15] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 433
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||