CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5849-5857.DOI: 10.11949/0438-1157.20210763
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Guoyue QIAO1,2(),Jutao LIU1(),Jianfei SUN1,Qinqin XU1,Jianzhong YIN1()
Received:
2021-06-08
Revised:
2021-09-01
Online:
2021-11-12
Published:
2021-11-05
Contact:
Jianzhong YIN
乔国岳1,2(),刘居陶1(),孙剑飞1,徐琴琴1,银建中1()
通讯作者:
银建中
作者简介:
乔国岳(1987—),男,博士,讲师,基金资助:
CLC Number:
Guoyue QIAO, Jutao LIU, Jianfei SUN, Qinqin XU, Jianzhong YIN. Study on crystallization kinetics of supported nanoparticles controlled by desorption of supercritical carbon dioxide[J]. CIESC Journal, 2021, 72(11): 5849-5857.
乔国岳, 刘居陶, 孙剑飞, 徐琴琴, 银建中. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857.
Add to citation manager EndNote|Ris|BibTeX
1 | Weng J Y, Huang Y P, Hao D L, et al. Recent advances of pharmaceutical crystallization theories[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 935-948. |
2 | 韩布兴. 超临界流体科学与技术[M]. 北京: 中国石化出版社, 2005. |
Han B X. Supercritical Fluid Science and Technology [M]. Beijing: China Petrochemical Press, 2005. | |
3 | Bozbağ S E, Erkey C. Supercritical deposition: current status and perspectives for the preparation of supported metal nanostructures[J]. The Journal of Supercritical Fluids, 2015, 96: 298-312. |
4 | Vorobei A M, Parenago O O. Using supercritical fluid technologies to prepare micro- and nanoparticles[J]. Russian Journal of Physical Chemistry A, 2021, 95(3): 407-417. |
5 | Debenedetti P G. Homogeneous nucleation in supercritical fluids[J]. AIChE Journal, 1990, 36(9): 1289-1298. |
6 | Debenedetti P G, Tom J W, Kwauk X, et al. Rapid expansion of supercritical solutions (RESS): fundamentals and applications[J]. Fluid Phase Equilibria, 1993, 82: 311-321. |
7 | Türk M. Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions[J]. The Journal of Supercritical Fluids, 2000, 18(3): 169-184. |
8 | Türk M. Formation of small organic particles by RESS: experimental and theoretical investigations[J]. The Journal of Supercritical Fluids, 1999, 15(1): 79-89. |
9 | Helfgen B, Türk M, Schaber K. Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions[J]. Powder Technology, 2000, 110(1/2): 22-28. |
10 | Helfgen B, Türk M, Schaber K. Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions (RESS-process)[J]. The Journal of Supercritical Fluids, 2003, 26(3): 225-242. |
11 | Hirunsit P, Huang Z, Srinophakun T, et al. Particle formation of ibuprofen-supercritical CO2 system from rapid expansion of supercritical solutions (RESS): a mathematical model[J]. Powder Technology, 2005, 154(2/3): 83-94. |
12 | Weber M, Thies M C. A simplified and generalized model for the rapid expansion of supercritical solutions[J]. The Journal of Supercritical Fluids, 2007, 40(3): 402-419. |
13 | Yamamoto S, Furusawa T. Thermophysical flow simulations of rapid expansion of supercritical solutions (RESS)[J]. The Journal of Supercritical Fluids, 2015, 97: 192-201. |
14 | Yin J Z, Xu Q Q, Wang A Q. Controlled growth of copper nanoparticles and nanorods in the channels of sba-15 by supercritical fluid deposition[J]. Chemical Engineering Communications, 2009, 197(4): 627-632. |
15 | Ni M, Xu Q Q, Yin J Z. Preparation of controlled release nanodrug ibuprofen supported on mesoporous silica using supercritical carbon dioxide[J]. Journal of Materials Research, 2012, 27(22): 2902-2910. |
16 | Xu Q Q, Wang Y Q, Wang A Q, et al. Systematical study of depositing nanoparticles and nanowires in mesoporous silica using supercritical carbon dioxide and co-solvents: morphology control, thermodynamics and kinetics of adsorption[J]. Nanotechnology, 2012, 23(28): 285602. |
17 | Xu Q Q, Zhang C J, Zhang X Z, et al. Controlled synthesis of Ag nanowires and nanoparticles in mesoporous silica using supercritical carbon dioxide and co-solvent[J]. The Journal of Supercritical Fluids, 2012, 62: 184-189. |
18 | Xu Q Q, Ma Y L, Gang X, et al. Comprehensive study of the role of ethylene glycol when preparing Ag@SBA-15 in supercritical CO2[J]. The Journal of Supercritical Fluids, 2014, 92: 100-106. |
19 | Xu Q Q, Xu G, Yin J Z, et al. Preparation of superhighly dispersed Co3O4@SBA-15 with different morphologies in supercritical CO2 with the assistance of dilute acids[J]. Industrial & Engineering Chemistry Research, 2014, 53(25): 10366-10371. |
20 | Xu Q Q, Ma Y L, Xu G, et al. Synthesis of highly dispersed silver nanoparticles or nano-network modified KIT-6 using supercritical carbon dioxide[J]. Journal of Materials Science, 2015, 50(2): 855-862. |
21 | Qiao G Y, Xu Q Q, Wang A Q, et al. Efficient synthesis of sub-5 nm Ag nanoparticles by the desorption effect of supercritical CO2 in SBA-15[J]. Nanotechnology, 2020, 31(37): 375603. |
22 | Qiao G Y, Xu Q Q, Wang A Q, et al. Size-controlled synthesis of CuO nanoparticles by the supercritical antisolvent method in SBA-15[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 129-136. |
23 | Cardoso F A R, Vogel E M, Souza M F, et al. Mathematical modeling to predict the size and nucleation rate of micro and nanoparticles using the scale-up process with supercritical CO2[J]. The Journal of Supercritical Fluids, 2019, 154: 104608. |
24 | Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen[J]. Annalen Der Physik, 1935, 416(8): 719-752. |
25 | Kwauk X, Debenedetti P G. Mathematical modeling of aerosol formation by rapid expansion of supercritical solutions in a converging nozzle[J]. Journal of Aerosol Science, 1993, 24(4): 445-469. |
26 | Tsung C K, Kuhn J N, Huang W, et al. Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation[J]. Journal of the American Chemical Society, 2009, 131(16): 5816-5822. |
27 | Zhang W, Tian Y, He H L, et al. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications[J]. National Science Review, 2020, 7(11): 1702-1725. |
28 | Ding J, Liu H M, Fan H Y, et al. Effective “exfoliation” of Cu/ZrO2 by varying Cu content as high performance catalysts for dimethyl oxalate hydrogenation to ethylene glycol[J]. Catalysis Communications, 2019, 121: 62-67. |
29 | Threlfall T. Structural and thermodynamic explanations of Ostwald's rule[J]. Organic Process Research & Development, 2003, 7(6): 1017-1027. |
30 | Chakraborty D, Patey G N. How crystals nucleate and grow in aqueous NaCl solution[J]. The Journal of Physical Chemistry Letters, 2013, 4(4): 573-578. |
31 | Dashtian H, Wang H M, Sahimi M. Nucleation of salt crystals in clay minerals: molecular dynamics simulation[J]. The Journal of Physical Chemistry Letters, 2017, 8(14): 3166-3172. |
32 | van der Meer J, Bardez-Giboire I, Mercier C, et al. Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique[J]. The Journal of Physical Chemistry C, 2010, 114(8): 3507-3515. |
33 | Tian L, Yang Q Y, Jiang Z, et al. Highly chemoselective hydrogenation of crotonaldehyde over Ag–In/SBA-15 fabricated by a modified “two solvents” strategy[J]. Chemical Communications, 2011, 47(21): 6168. |
34 | Xin Q, Glisenti A, Philippopoulos C, et al. Comparison between a water-based and a solvent-based impregnation method towards dispersed CuO/SBA-15 catalysts: texture, structure and catalytic performance in automotive exhaust gas abatement[J]. Catalysts, 2016, 6(10): 164. |
35 | Qiao G Y, Xu Q Q, Yin J Z, et al. Synthesis of CuO/SBA-15 nanocomposite in ternary system of CO2, inorganic salt and co-solvent[J]. The Journal of Supercritical Fluids, 2017, 128: 18-25. |
36 | Patel A, Rufford T E, Rudolph V, et al. Selective catalytic reduction of NO by CO over CuO supported on SBA-15: effect of CuO loading on the activity of catalysts[J]. Catalysis Today, 2011, 166(1): 188-193. |
37 | Pattadar D K, Zamborini F P. Size stability study of catalytically active sub-2 nm diameter gold nanoparticles synthesized with weak stabilizers[J]. Journal of the American Chemical Society, 2018, 140(43): 14126-14133. |
38 | Arenz M, Landman U, Heiz U. CO combustion on supported gold clusters[J]. ChemPhysChem, 2006, 7(9): 1871-1879. |
39 | Qiao G, Xu Q, Wang A, et al. Desorption-dominated synthesis of CuO/SBA-15 with tunable particle size and loading in supercritical CO2[J]. Nanotechnology, 2020, 31(9): 095602. |
40 | Lee S J, Kim S, Kim H S, et al. Dynamic simulation and optimization of population balance model for gas anti-solvent recrystallization process[J]. IFAC Proceedings Volumes, 2012, 45(15): 245-249. |
41 | Debenedetti P G, Kumar S K. Infinite dilution fugacity coefficients and the general behavior of dilute binary systems[J]. AIChE Journal, 1986, 32(8): 1253-1262. |
42 | 董新艳. 溶质在超临界CO2及含改性剂的超临界CO2中扩散系数及其构效关系研究[D]. 杭州: 浙江大学, 2012. |
Dong X Y. Diffusion coefficient in pure and modified supercritical CO2 and their structure-property relationship[D]. Hangzhou: Zhejiang University, 2012. | |
43 | Fernandez-Martinez A, Hu Y D, Lee B, et al. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping[J]. Environmental Science & Technology, 2013, 47(1): 102-109. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[3] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[4] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[5] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[6] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[7] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[8] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[9] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[10] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[11] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[12] | Wenli GAO, Zhong XIN. Research on promotion of Fe in Ni/SBA-16 catalyzing CO methanation at low temperature [J]. CIESC Journal, 2022, 73(1): 241-254. |
[13] | Yingjie FEI, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction [J]. CIESC Journal, 2022, 73(1): 213-221. |
[14] | Lihui WANG, Huan LIU, Heyu LI, Xiaobing ZHENG, Yanjun JIANG, Jing GAO. Preparation and application of core-shell hydrophobic magnetic dendritic fibrous organosilica immobilized lipase [J]. CIESC Journal, 2021, 72(9): 4861-4871. |
[15] | CHEN Tingting, YIN Jiongting, XU Yingjie. Research progress of ionic liquids in preparation of ZnO nanomaterials [J]. CIESC Journal, 2021, 72(5): 2436-2447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||