CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 434-440.DOI: 10.11949/0438-1157.20210884
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Wenjun MA(),Zhuo CHEN,Sida LING,Jingwei ZHANG,Jianhong XU
Received:
2021-06-29
Revised:
2021-08-10
Online:
2022-01-18
Published:
2022-01-05
Contact:
Jianhong XU
通讯作者:
徐建鸿
作者简介:
马文峻(1998—),男,博士研究生,基金资助:
CLC Number:
Wenjun MA, Zhuo CHEN, Sida LING, Jingwei ZHANG, Jianhong XU. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device[J]. CIESC Journal, 2022, 73(1): 434-440.
马文峻, 陈卓, 凌斯达, 张经纬, 徐建鸿. 3D打印微流控通道快速可控制备核壳微纤维[J]. 化工学报, 2022, 73(1): 434-440.
溶液 | 黏度等级 | 黏度值/(mPa·s) | 溶液组成 |
---|---|---|---|
内相 | 低 | 5.4 | 2.0%(质量)PVA溶液 |
中 | 105.2 | 0.5%(质量)海藻酸钠+2.0%(质量)PVA | |
高 | 2287 | 1.5%(质量)海藻酸钠+2.0%(质量)PVA | |
中间相 | 中 | 776.8 | 1.0%(质量)海藻酸钠+5.0%(质量)PEG 20000 |
高 | 5109 | 2.0%(质量)海藻酸钠+5.0%(质量)PEG 20000 | |
外相 | — | — | 5.0%(质量)氯化钙+2.0%(质量)PVA |
Table 1 Internal and mesophase solutions of different viscosities
溶液 | 黏度等级 | 黏度值/(mPa·s) | 溶液组成 |
---|---|---|---|
内相 | 低 | 5.4 | 2.0%(质量)PVA溶液 |
中 | 105.2 | 0.5%(质量)海藻酸钠+2.0%(质量)PVA | |
高 | 2287 | 1.5%(质量)海藻酸钠+2.0%(质量)PVA | |
中间相 | 中 | 776.8 | 1.0%(质量)海藻酸钠+5.0%(质量)PEG 20000 |
高 | 5109 | 2.0%(质量)海藻酸钠+5.0%(质量)PEG 20000 | |
外相 | — | — | 5.0%(质量)氯化钙+2.0%(质量)PVA |
1 | Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions[J]. Nature Materials, 2013, 12(6): 584-590. |
2 | Du X Y, Li Q, Wu G, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials, 2019, 31(52): 1903733. |
3 | He X, Zi Y L, Guo H Y, et al. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics[J]. Advanced Functional Materials, 2017, 27(4): 1604378. |
4 | Wang P, Wang Y P, Tong L M. Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale[J]. Light: Science & Applications, 2013, 2(10): e102. |
5 | Zhou J, Xu X Z, Xin Y Y, et al. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors[J]. Advanced Functional Materials, 2018, 28(16): 1705591. |
6 | Chen C P, Townsend A D, Sell S A, et al. Microchip-based 3D-cell culture using polymer nanofibers generated by solution blow spinning[J]. Analytical Methods, 2017, 9(22): 3274-3283. |
7 | Chen T, Wang S T, Yang Z B, et al. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell[J]. Angewandte Chemie International Edition, 2011, 50(8): 1815-1819. |
8 | Ghosh S, Parker S T, Wang X Y, et al. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications[J]. Advanced Functional Materials, 2008, 18(13): 1883-1889. |
9 | Huang Y, Bai X P, Zhou M, et al. Large-scale spinning of silver nanofibers as flexible and reliable conductors[J]. Nano Letters, 2016, 16(9): 5846-5851. |
10 | Inozemtseva O A, Salkovskiy Y E, Severyukhina A N, et al. Electrospinning of functional materials for biomedicine and tissue engineering[J]. Russian Chemical Reviews, 2015, 84(3): 251-274. |
11 | Qin C C, Duan X P, Wang L, et al. Melt electrospinning of poly(lactic acid) and polycaprolactone microfibers by using a hand-operated Wimshurst generator[J]. Nanoscale, 2015, 7(40): 16611-16615. |
12 | Truby R L, Lewis J A. Printing soft matter in three dimensions[J]. Nature, 2016, 540(7633): 371-378. |
13 | Xu Z, Gao C. In situ polymerization approach to graphene-reinforced Nylon-6 composites[J]. Macromolecules, 2010, 43(16): 6716-6723. |
14 | Yu Y, Shang L, Guo J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols, 2018, 13(11): 2557-2579. |
15 | Zarrin F, Dovichi N J. Sub-picoliter detection with the sheath flow cuvette[J]. Analytical Chemistry, 1985, 57(13): 2690-2692. |
16 | Kim S, Oh H, Baek J, et al. Hydrodynamic fabrication of polymeric barcoded strips as components for parallel bio-analysis and programmable microactuation[J]. Lab on a Chip, 2005, 5(10): 1168. |
17 | Shi X T, Ostrovidov S, Zhao Y H, et al. Microfluidic spinning of cell-responsive grooved microfibers[J]. Advanced Functional Materials, 2015, 25(15): 2250-2259. |
18 | Kang E, Jeong G S, Choi Y Y, et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11): 877-883. |
19 | Furness J B. The enteric nervous system and neurogastroenterology[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(5): 286-294. |
20 | Choi C H, Yi H, Hwang S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab on a Chip, 2011, 11(8): 1477. |
21 | Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85-89. |
22 | Bai H, Tian X L, Zheng Y M, et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks[J]. Advanced Materials, 2010, 22(48): 5521-5525. |
23 | Chiesa E, Dorati R, Pisani S, et al. The microfluidic technique and the manufacturing of polysaccharide nanoparticles[J]. Pharmaceutics, 2018, 10(4): 267. |
24 | Hassan N, Oyarzun-Ampuero F, Lara P, et al. Flow chemistry to control the synthesis of nano and microparticles for biomedical applications[J]. Current Topics in Medicinal Chemistry, 2014, 14(5): 676-689. |
25 | 褚良银, 谢锐, 巨晓洁, 等. 微流控技术构建单分散微囊膜的研究新进展[J]. 膜科学与技术, 2011, 31(3): 59-63. |
Chu L Y, Xie R, Ju X J, et al. Recent progress in monodisperse microcapsule membranes generated with microfluidic technique[J]. Membrane Science and Technology, 2011, 31(3): 59-63. | |
26 | Martins E, Poncelet D, Rodrigues R C, et al. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks[J]. Journal of Microencapsulation, 2017, 34(8): 754-771. |
27 | Namgung B, Ravi K, Vikraman P P, et al. Engineered cell-laden alginate microparticles for 3D culture[J]. Biochemical Society Transactions, 2021, 49(2): 761-773. |
28 | Sun T, Li X F, Shi Q, et al. Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering[J]. Gels, 2018, 4(2): 38. |
29 | Tumarkin E, Kumacheva E. Microfluidic generation of microgels from synthetic and natural polymers[J]. Chemical Society Reviews, 2009, 38(8): 2161-2168. |
30 | Xu M J, Qin M, Cheng Y Z, et al. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine[J]. Carbohydrate Polymers, 2021, 266: 118128. |
31 | Cai J, Chen X J, Wang X J, et al. High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings[J]. RSC Advances, 2018, 8(69): 39463-39469. |
32 | Tian Y, Wang J C, Wang L Q. Microfluidic fabrication of bioinspired cavity-microfibers for 3D scaffolds[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29219-29226. |
33 | Yu Y R, Chen G P, Guo J H, et al. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing[J]. Materials Horizons, 2018, 5(6): 1137-1142. |
34 | Xie R X, Liang Z, Ai Y J, et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes[J]. Nature Protocols, 2021, 16(2): 937-964. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[4] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[7] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[8] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[9] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[10] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[11] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[12] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[13] | Hanbing HE, Zhen LIU, Yong CHEN, Xiaofeng WANG, Jing ZENG. Synthesis and slurry control of manganese oxide powder for direct ink writing electrode [J]. CIESC Journal, 2023, 74(5): 2239-2247. |
[14] | Chuanbao XIAO, Linyang LI, Wufeng LIU, Nianbing ZHONG, Quanhua XIE, Dengjie ZHONG, Haixing CHANG. Effective removal of 2,4,6-trichlorophenol by coupling photocatalysis with ion exchange adsorption [J]. CIESC Journal, 2023, 74(4): 1587-1597. |
[15] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 705
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 540
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||