CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2239-2247.DOI: 10.11949/0438-1157.20221688
• Material science and engineering, nanotechnology • Previous Articles
Hanbing HE1(), Zhen LIU1, Yong CHEN1, Xiaofeng WANG2, Jing ZENG1(
)
Received:
2022-12-31
Revised:
2023-03-14
Online:
2023-06-29
Published:
2023-05-05
Contact:
Jing ZENG
通讯作者:
曾婧
作者简介:
何汉兵(1980—),男,博士,副教授,hehanbinghhb@csu.edu.cn
基金资助:
CLC Number:
Hanbing HE, Zhen LIU, Yong CHEN, Xiaofeng WANG, Jing ZENG. Synthesis and slurry control of manganese oxide powder for direct ink writing electrode[J]. CIESC Journal, 2023, 74(5): 2239-2247.
何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247.
水热反应 温度/℃ | 颗粒直径/μm | 比表面积/ (m²·g-1) | 可打印区间 (固相质量分数)/% |
---|---|---|---|
100 | 1.64 | 33.0418 | 20~25 |
110 | 1.52 | 30.7876 | 20~25 |
120 | 1.39 | 28.4776 | 25~30 |
130 | 1.24 | 24.1953 | 25~30 |
140 | 1.06 | 17.2011 | 25~35 |
150 | 46.46 | 9.7487 | 25~30 |
160 | 67.63 | 6.4359 | 30~35 |
170 | 87.32 | 2.6529 | 25~30 |
180 | 91.36 | 2.2817 | 25~30 |
Table 1 Diameter, specific surface area and printable range of manganese oxide particles under different hydrothermal reaction temperatures
水热反应 温度/℃ | 颗粒直径/μm | 比表面积/ (m²·g-1) | 可打印区间 (固相质量分数)/% |
---|---|---|---|
100 | 1.64 | 33.0418 | 20~25 |
110 | 1.52 | 30.7876 | 20~25 |
120 | 1.39 | 28.4776 | 25~30 |
130 | 1.24 | 24.1953 | 25~30 |
140 | 1.06 | 17.2011 | 25~35 |
150 | 46.46 | 9.7487 | 25~30 |
160 | 67.63 | 6.4359 | 30~35 |
170 | 87.32 | 2.6529 | 25~30 |
180 | 91.36 | 2.2817 | 25~30 |
Fig.3 Slurry sedimentation test with different thickeners: PEG-600,PEG-1000,CMC,HEMC,PVDF (from left to right) (a); Preprinting of Mn100 slurry at different solid mass fractions: 15% (b); 20% (c); 25% (d)
Fig.5 Schematic diagram of the printing process: several distribution modes of particles in the slurry [(a)—(c)]; digital microscope image of direct writing formed electrode prepared with Mn100 28% slurry before drying (d) and after drying (e)
Fig.6 Function image of apparent viscosity and shear rate of slurry prepared by different powders and relationship between initial apparent viscosity and solid content of each slurry
1 | Wei M, Zhang F, Wang W, et al. 3D direct writing fabrication of electrodes for electrochemical storage devices[J]. Journal of Power Sources, 2017, 354: 134-147. |
2 | Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2014, 7(1): 14-18. |
3 | Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301. |
4 | Zhong C, Liu B, Ding J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries[J]. Nature Energy, 2020, 5(6): 440-449. |
5 | Ji J, Wan H Z, Zhang B, et al. Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries[J]. Advanced Energy Materials, 2021, 11(6): 2003203. |
6 | Tagliaferri S, Panagiotopoulos A, Mattevi C. Direct ink writing of energy materials[J]. Materials Advances, 2021, 2(2): 540-563. |
7 | Wu K, Huang J H, Yi J, et al. Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives[J]. Advanced Energy Materials, 2020, 10(12): 1903977. |
8 | Luo Z X, Zeng J, Liu Z, et al. Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2022, 906: 164388. |
9 | Wei T S, Ahn B Y, Grotto J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials, 2018, 30(16): 1703027. |
10 | Chang P, Mei H, Zhou S X, et al. 3D printed electrochemical energy storage devices[J]. Journal of Materials Chemistry A, 2019, 7(9): 4230-4258. |
11 | Amato D N, Amato D V, Sandoz M, et al. Programmable porous polymers via direct bubble writing with surfactant-free inks[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42048-42055. |
12 | Tian X C, Wang T, Ma H, et al. A universal strategy towards 3D printable nanomaterial inks for superior cellular high-loading battery electrodes[J]. Journal of Materials Chemistry A, 2021, 9(29): 16086-16092. |
13 | 李文利, 周宏志, 刘卫卫, 等. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50. |
Li W L, Zhou H Z, Liu W W, et al. Research progress in ceramic slurries and rheology viaphotopolymerization-based 3D printing[J]. Journal of Materials Engineering, 2022, 50(7): 40-50. | |
14 | Bae C J, Ramachandran A, Halloran J W. Quantifying particle segregation in sequential layers fabricated by additive manufacturing[J]. Journal of the European Ceramic Society, 2018, 38(11): 4082-4088. |
15 | Bae C J, Halloran J W. Concentrated suspension-based additive manufacturing-viscosity, packing density, and segregation[J]. Journal of the European Ceramic Society, 2019, 39(14): 4299-4306. |
16 | Zakeri S, Vippola M, Levänen E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35: 101177. |
17 | Dou R, Tang W Z, Hu K X, et al. Ceramic paste for space stereolithography 3D printing technology in microgravity environment[J]. Journal of the European Ceramic Society, 2022, 42(9): 3968-3975. |
18 | Praveen S, Santhoshkumar P, Joe Y C, et al. 3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices[J]. Applied Materials Today, 2020, 20: 100688. |
19 | Wang J W, Sun Q, Gao X J, et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39794-39801. |
20 | Shen C L, Wang T, Xu X, et al. 3D printed cellular cathodes with hierarchical pores and high mass loading for Li-SeS2 battery[J]. Electrochimica Acta, 2020, 349: 136331. |
21 | Janssen R, Scheppokat S, Claussen N. Tailor-made ceramic-based components—advantages by reactive processing and advanced shaping techniques[J]. Journal of the European Ceramic Society, 2008, 28(7): 1369-1379. |
22 | Zhang Y N, Liu Y P, Liu Z H, et al. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2022, 64: 23-32. |
23 | Cao X W, Xu Y T, Yang B, et al. In-situ Co-precipitated α-MnO2@2-methylimidazole cathode material for high performance zinc ion batteries[J]. Journal of Alloys and Compounds, 2022, 896: 162785. |
24 | Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods[J]. Chemistry, 2003, 9(1): 300-306. |
25 | 左文婧, 屈银虎, 祁攀虎, 等. 3D打印锂离子电池正极的制备及性能[J]. 工程科学学报, 2020, 42(3): 358-364. |
Zuo W J, Qu Y H, Qi P H, et al. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. | |
26 | 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21. |
Wang Y B, Zhao J P. 3D printing of flexible electrodes towards wearable lithium ion battery[J]. Journal of Materials Engineering, 2018, 46(3): 13-21. | |
27 | Friedrich L, Begley M. Printing direction dependent microstructures in direct ink writing[J]. Additive Manufacturing, 2020, 34: 101192. |
28 | Sydney Gladman A, Matsumoto E A, Nuzzo R G, et al. Biomimetic 4D printing[J]. Nature Materials, 2016, 15(4): 413-418. |
29 | Kou T Y, Wang S W, Shi R P, et al. Water splitting: periodic porous 3D electrodes mitigate gas bubble traffic during alkaline water electrolysis at high current densities[J]. Advanced Energy Materials, 2020, 10(46): 2070189. |
30 | Bu X M, Mao Z Y, Bu Y, et al. Remarkable gas bubble transport driven by capillary pressure in 3D printing-enabled anisotropic structures for efficient hydrogen evolution electrocatalysts[J]. Applied Catalysis B: Environmental, 2023, 320: 121995. |
31 | Smith P T, Basu A, Saha A, et al. Chemical modification and printability of shear-thinning hydrogel inks for direct-write 3D printing[J]. Polymer, 2018, 152: 42-50. |
32 | Wilt J K, Gilmer D, Kim S, et al. Direct ink writing techniques for in situ gelation and solidification[J]. MRS Communications, 2021, 11(2): 106-121. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Zhenbao LI, Chao LI, Hu WANG, Shaorui WANG, Quan LI. The microscopic mechanism on MPP inhibiting explosion of Al-Mg alloy powder [J]. CIESC Journal, 2023, 74(8): 3608-3614. |
[4] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[5] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[6] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[7] | Xianxian RAO, Miao DU, Guorong SHAN, Pengju PAN. Effect of different metal salt demulsifiers on vulcanization behavior of isobutylene isoprene rubber [J]. CIESC Journal, 2023, 74(2): 756-765. |
[8] | Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437. |
[9] | Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254. |
[10] | Hanlin YAO, Zhong XIN. Research on flow behavior of liquid-phase precipitation reaction in the tubular microchannel reactor [J]. CIESC Journal, 2022, 73(8): 3518-3528. |
[11] | Yao LU, Jie DONG, Dawei SUN, Letian XIE, Jiayong LU, Xiaoning DU. Fabrication and electrical properties of textured PNN-PZT ceramics by stereolithography technology [J]. CIESC Journal, 2022, 73(8): 3768-3775. |
[12] | Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation [J]. CIESC Journal, 2022, 73(4): 1585-1596. |
[13] | Jianfei ZHANG, Jiajiang LIN, Xionglin LUO, Feng XU. Modeling analysis for product distribution control and optimization of heavy oil FCCU [J]. CIESC Journal, 2022, 73(3): 1232-1245. |
[14] | Huijun SHANG, Hengli LI, Jiayi LIU, Feng PAN, Zhan DU, Linbing SUN. Effect of Co on the pre-reduction process of WO3-Co3O4 and carbonization performance of its product [J]. CIESC Journal, 2022, 73(12): 5592-5604. |
[15] | Bei PEI, Mengjiao XU, Shuangming WEI, Jiaqi GUO, Shiliang LI, Ziwei HU. Comparison of explosion characteristics of methane/graphite powder and methane/pulverized coal [J]. CIESC Journal, 2022, 73(10): 4769-4779. |
Viewed | ||||||
Full text 672
|
|
|||||
Abstract |
|
|||||