CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6073-6085.DOI: 10.11949/0438-1157.20211119
• Reviews and monographs • Previous Articles Next Articles
Bo LIU1(),Yichang PAN1(),Rongfei ZHOU1,2,Weihong XING1,2()
Received:
2021-08-09
Revised:
2021-10-12
Online:
2021-12-22
Published:
2021-12-05
Contact:
Weihong XING
通讯作者:
邢卫红
作者简介:
柳波(1987—),男,博士,副教授,基金资助:
CLC Number:
Bo LIU, Yichang PAN, Rongfei ZHOU, Weihong XING. Research progress on microstructure regulation of molecular sieving membranes for H2/CH4 separation[J]. CIESC Journal, 2021, 72(12): 6073-6085.
柳波, 潘宜昌, 周荣飞, 邢卫红. 面向氢气/甲烷分离分子筛膜微结构调控的研究进展[J]. 化工学报, 2021, 72(12): 6073-6085.
Add to citation manager EndNote|Ris|BibTeX
1 | Ahmad H, Kamarudin S K, Minggu L J, et al. Hydrogen from photo-catalytic water splitting process: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 599-610. |
2 | You B, Sun Y. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1571-1580. |
3 | Fan Z Y, Weng W, Zhou J, et al. Catalytic decomposition of methane to produce hydrogen: a review[J]. Journal of Energy Chemistry, 2021, 58: 415-430. |
4 | Shah M, McCarthy M C, Sachdeva S, et al. Current status of metal-organic framework membranes for gas separations: promises and challenges[J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2179-2199. |
5 | Lu H T, Li W, Miandoab E S, et al. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review[J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 464-482. |
6 | Li P Y, Wang Z, Qiao Z H, et al. Recent developments in membranes for efficient hydrogen purification[J]. Journal of Membrane Science, 2015, 495: 130-168. |
7 | Li H, Haas-Santo K, Schygulla U, et al. Inorganic microporous membranes for H2 and CO2 separation—review of experimental and modeling progress[J]. Chemical Engineering Science, 2015, 127: 401-417. |
8 | Al-Mufachi N A, Rees N V, Steinberger-Wilkens R. Hydrogen selective membranes: a review of palladium-based dense metal membranes[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 540-551. |
9 | Ockwig N W, Nenoff T M. Membranes for hydrogen separation[J]. Chemical Reviews, 2007, 107(10): 4078-4110. |
10 | Huang A S, Liu Q, Wang N Y, et al. Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports[J]. Journal of Membrane Science, 2013, 437: 57-64. |
11 | Mei W L, Du Y, Wu T Y, et al. High-flux CHA zeolite membranes for H2 separations[J]. Journal of Membrane Science, 2018, 565: 358-369. |
12 | Wang B, Hu N, Wang H M, et al. Improved AlPO-18 membranes for light gas separation[J]. Journal of Materials Chemistry A, 2015, 3(23): 12205-12212. |
13 | Zhang F, Zou X Q, Gao X, et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability[J]. Advanced Functional Materials, 2012, 22(17): 3583-3590. |
14 | Jin H, Wollbrink A, Yao R, et al. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions[J]. Journal of Membrane Science, 2016, 513: 40-46. |
15 | Kang Z X, Xue M, Fan L L, et al. Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane[J]. Energy Environ. Sci., 2014, 7(12): 4053-4060. |
16 | Rangnekar N, Mittal N, Elyassi B, et al. Zeolite membranes—a review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. |
17 | Zhong S L, Song S C, Wang B, et al. Fast preparation of ERI-structure AlPO-17 and SAPO-17 in the presences of isomorphous and heterogeneous seeds[J]. Microporous and Mesoporous Materials, 2018, 263: 11-20. |
18 | Wang L, Zhang C, Gao X C, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature[J]. Journal of Membrane Science, 2017, 539: 152-160. |
19 | Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369. |
20 | 刘益, 刘毅. 取向晶种法制备沸石分子筛膜研究进展[J]. 高等学校化学学报, 2021, 42(1): 117-132. |
Liu Y, Liu Y. Research progress on zeolite layer preparation via oriented seeded growth[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 117-132. | |
21 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
22 | Zhou M, Korelskiy D, Ye P C, et al. A uniformly oriented MFI membrane for improved CO2 separation[J]. Angewandte Chemie International Edition, 2014, 53(13): 3492-3495. |
23 | Choi J, Ghosh S, Lai Z P, et al. Uniformly a-oriented MFI zeolite films by secondary growth[J]. Angewandte Chemie International Edition, 2006, 45(7): 1154-1158. |
24 | Agrawal K V, Topuz B, Pham T C T, et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers[J]. Advanced Materials, 2015, 27(21): 3243-3249. |
25 | Huang A S, Caro J. Highly oriented, neutral and cation-free AlPO4 LTA: from a seed crystal monolayer to a molecular sieve membrane[J]. Chemical Communications, 2011, 47(14): 4201. |
26 | Zhou M, Hedlund J. Facile preparation of hydrophobic colloidal MFI and CHA crystals and oriented ultrathin films[J]. Angewandte Chemie, 2018, 130(34): 11132-11136. |
27 | Kim E, Cai W X, Baik H, et al. Uniform Si-CHA zeolite layers formed by a selective sonication-assisted deposition method[J]. Angewandte Chemie International Edition, 2013, 52(20): 5280-5284. |
28 | Bing L C, Wang G J, Wang F, et al. Preparation of a preferentially oriented SAPO-34 membrane by secondary growth under microwave irradiation[J]. RSC Advances, 2016, 6(61): 56170-56173. |
29 | Tian Y Y, Fan L L, Wang Z Y, et al. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture[J]. Journal of Materials Chemistry, 2009, 19(41): 7698. |
30 | Wang B, Wu T Y, Yu M, et al. Highly ordered nanochannels in a nanosheet-directed thin zeolite nanofilm for precise and fast CO2 separation[J]. Small, 2020, 16(41): 2002836. |
31 | Wang B, Gao F, Zhang F, et al. Highly permeable and oriented AlPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2019, 7(21): 13164-13172. |
32 | Le Q T, Nguyen D H P, Nguyen N M, et al. Gelless secondary growth of zeolitic aluminophosphate membranes on porous supports with high performance in CO2/CH4 separation[J]. ChemSusChem, 2020, 13(7): 1720-1724. |
33 | Zheng Y H, Hu N, Wang H M, et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation[J]. Journal of Membrane Science, 2015, 475: 303-310. |
34 | Wang B, Zheng Y H, Zhang J F, et al. Separation of light gas mixtures using zeolite SSZ-13 membranes[J]. Microporous and Mesoporous Materials, 2019, 275: 191-199. |
35 | Li Y M, He S N, Shu C J, et al. A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations[J]. Journal of Membrane Science, 2021, 632: 119349. |
36 | Zhou L, Yang J H, Li G, et al. Highly H2 permeable SAPO-34 membranes by steam-assisted conversion seeding[J]. International Journal of Hydrogen Energy, 2014, 39(27): 14949-14954. |
37 | Tang H B, Bai L, Wang M Q, et al. Fast synthesis of thin high silica SSZ-13 zeolite membrane using oil-bath heating[J]. International Journal of Hydrogen Energy, 2019, 44(41): 23107-23119. |
38 | Kida K, Maeta Y, Yogo K. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation[J]. Separation and Purification Technology, 2018, 197: 116-121. |
39 | Zhou J J, Gao F, Sun K, et al. Green synthesis of highly CO2-selective CHA zeolite membranes in all-silica and fluoride-free solution for CO2/CH4 separations[J]. Energy & Fuels, 2020, 34(9): 11307-11314. |
40 | Yu L, Nobandegani M S, Holmgren A, et al. Highly permeable and selective tubular zeolite CHA membranes[J]. Journal of Membrane Science, 2019, 588: 117224. |
41 | Wang M Q, Bai L, Li M, et al. Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating[J]. Journal of Membrane Science, 2019, 572: 567-579. |
42 | Lee T, Choi J, Tsapatsis M. On the performance of c-oriented MFI zeolite membranes treated by rapid thermal processing[J]. Journal of Membrane Science, 2013, 436: 79-89. |
43 | Chang N, Tang H B, Bai L, et al. Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes[J]. Journal of Membrane Science, 2018, 552: 13-21. |
44 | Araki S, Yamashita R, Li K, et al. Preparation and gas permeation properties of all-silica CHA zeolite hollow fiber membranes prepared on amorphous-silica hollow fibers[J]. Journal of Membrane Science, 2021, 634: 119338. |
45 | Liu B, Zhou R F, Yogo K, et al. Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 333-343. |
46 | Yu M, Funke H H, Noble R D, et al. H2 separation using defect-free, inorganic composite membranes[J]. Journal of the American Chemical Society, 2011, 133(6): 1748-1750. |
47 | Zhou R F, Wang H M, Wang B, et al. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7516-7523. |
48 | Yang S W, Cao Z S, Arvanitis A, et al. DDR-type zeolite membrane synthesis, modification and gas permeation studies[J]. Journal of Membrane Science, 2016, 505: 194-204. |
49 | Kosinov N, Auffret C, Borghuis G J, et al. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes[J]. Journal of Membrane Science, 2015, 484: 140-145. |
50 | Kida K, Maeta Y, Yogo K. Preparation and gas permeation properties on pure silica CHA-type zeolite membranes[J]. Journal of Membrane Science, 2017, 522: 363-370. |
51 | Araki S, Ishii H, Imasaka S, et al. Synthesis and gas permeation properties of chabazite-type titanosilicate membranes synthesized using nano-sized seed crystals[J]. Microporous and Mesoporous Materials, 2020, 292: 109798. |
52 | Wu T Y, Shu C J, Liu S, et al. Separation performance of Si-CHA zeolite membrane for a binary H2/CH4 mixture and ternary and quaternary mixtures containing impurities[J]. Energy & Fuels, 2020, 34(9): 11650-11659. |
53 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
54 | Hou J, Zhang H C, Simon G P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J]. Advanced Materials, 2020, 32(18): 1902009. |
55 | Yang L, Qian S, Wang X, et al. Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
56 | Qiu S, Xue M, Zhu G. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
57 | Hu Y, Dong X, Nan J, et al. Metal-organic framework membranes fabricated via reactive seeding[J]. Chemical Communications, 2011, 47(2): 737-739. |
58 | Friebe S, Geppert B, Steinbach F, et al. Metal-organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12878-12885. |
59 | Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
60 | Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
61 | Ma X X, Wan Z, Li Y H, et al. Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth[J]. Angewandte Chemie International Edition, 2020, 59(47): 20858-20862. |
62 | Wang X R, Chi C L, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation[J]. Nature Communications, 2017, 8: 14460. |
63 | Nian P, Liu H O, Zhang X F. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation[J]. Journal of Membrane Science, 2019, 573: 200-209. |
64 | Li Y, Liu H, Wang H, et al. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation[J]. Chemical Science, 2018, 9(17): 4132-4141. |
65 | Fairen-Jimenez D, Moggach S A, Wharmby M T, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 2011, 133(23): 8900-8902. |
66 | Zhang X F, Liu Y G, Kong L Y, et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes[J]. Journal of Materials Chemistry A, 2013, 1(36): 10635. |
67 | Bux H, Feldhoff A, Cravillon J, et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation[J]. Chemistry of Materials, 2011, 23(8): 2262-2269. |
68 | Cacho-Bailo F, Catalán-Aguirre S, Etxeberría-Benavides M, et al. Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis[J]. Journal of Membrane Science, 2015, 476: 277-285. |
69 | Pan Y, Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications (Cambridge, England), 2011, 47(37): 10275-10277. |
70 | Kong L Y, Zhang X F, Liu H O, et al. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer[J]. Journal of Membrane Science, 2015, 490: 354-363. |
71 | Huang A, Liu Q, Wang N, et al. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity[J]. Journal of the American Chemical Society, 2014, 136(42): 14686-14689. |
72 | Babu D J, He G W, Hao J, et al. Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture[J]. Advanced Materials, 2019, 31(28): 1900855. |
73 | Huang A S, Wang N Y, Kong C L, et al. Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance[J]. Angewandte Chemie International Edition, 2012, 51(42): 10551-10555. |
74 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
75 | 郝阿辉, 刘晓红, 刘秀凤, 等. 微波辅助二次生长法合成SAPO-34分子筛膜与关键影响因素[J]. 化工学报, 2017, 68(2): 716-722. |
Hao A H, Liu X H, Liu X F, et al. Synthesis of SAPO-34 membranes and critical influence factors in microwave-assisted secondary growth[J]. CIESC Journal, 2017, 68(2): 716-722. | |
76 | 王绍宇, 马翰泽, 吴洪, 等. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7): 3488-3510. |
Wang S Y, Ma H Z, Wu H, et al. Research advances of organic framework membranes in gas separation[J]. CIESC Journal, 2021, 72(7): 3488-3510. | |
77 | 肖红岩, 郭明钢, 贺高红, 等. 氢气分离膜内嵌改进蒸汽活化转化丙烷脱氢过程模拟和经济分析[J]. 化工进展, 2019, 38(12): 5257-5263. |
Xiao H Y, Guo M G, He G H, et al. Retrofit and optimization of steam active reforming (STAR) propane dehydrogenation technology with embedded hydrogen membrane separation[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5257-5263. | |
78 | Ozcan A, Keskin S. Effects of molecular simulation parameters on predicting gas separation performance of ZIFs[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(9): 1707-1718. |
79 | Kusakabe K, Kuroda T, Uchino K, et al. Gas permeation properties of ion-exchanged faujasite-type zeolite membranes[J]. AIChE Journal, 1999, 45(6): 1220-1226. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[7] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[8] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[9] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[10] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[11] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[12] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[13] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[14] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[15] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||