CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 876-886.DOI: 10.11949/0438-1157.20211020
• Energy and environmental engineering • Previous Articles Next Articles
Haolong BAI1(),Liangliang FU1,2,Guangwen XU1,Dingrong BAI1()
Received:
2021-07-22
Revised:
2021-10-25
Online:
2022-02-18
Published:
2022-02-05
Contact:
Dingrong BAI
通讯作者:
白丁荣
作者简介:
白浩隆(1989—),男,硕士研究生,基金资助:
CLC Number:
Haolong BAI, Liangliang FU, Guangwen XU, Dingrong BAI. Characteristics of gaseous nitrogen release in coal fluidized bed combustion under different atmospheres[J]. CIESC Journal, 2022, 73(2): 876-886.
白浩隆, 付亮亮, 许光文, 白丁荣. 流化床煤燃烧过程不同气氛下的气态氮释放特征[J]. 化工学报, 2022, 73(2): 876-886.
Add to citation manager EndNote|Ris|BibTeX
Sample | Proximate analysis/%(mass,air dry basis) | Ultimate analysis/%( mass,ash-free dry basis) | ||||||
---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | |
BC500~1000 | 4.23 | 26.32 | 3.60 | 65.85 | 75.79 | 4.418 | 1.005 | 0.61 |
BC230~500 | 4.38 | 26.03 | 4.97 | 64.63 | 73.84 | 4.706 | 1.004 | 0.63 |
BC20~230 | 4.71 | 26.78 | 6.47 | 62.05 | 74.06 | 4.599 | 0.919 | 0.59 |
AC500~1000 | 1.36 | 9.77 | 22.15 | 66.71 | 63.35 | 3.103 | 1.218 | 0.45 |
AC230~500 | 1.23 | 8.09 | 19.61 | 71.07 | 74.43 | 3.42 | 1.229 | 0.44 |
AC20~230 | 1.27 | 8.26 | 18.26 | 72.21 | 72.24 | 3.422 | 1.21 | 0.42 |
Table 1 Proximate and ultimate analysis of the coal samples
Sample | Proximate analysis/%(mass,air dry basis) | Ultimate analysis/%( mass,ash-free dry basis) | ||||||
---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | |
BC500~1000 | 4.23 | 26.32 | 3.60 | 65.85 | 75.79 | 4.418 | 1.005 | 0.61 |
BC230~500 | 4.38 | 26.03 | 4.97 | 64.63 | 73.84 | 4.706 | 1.004 | 0.63 |
BC20~230 | 4.71 | 26.78 | 6.47 | 62.05 | 74.06 | 4.599 | 0.919 | 0.59 |
AC500~1000 | 1.36 | 9.77 | 22.15 | 66.71 | 63.35 | 3.103 | 1.218 | 0.45 |
AC230~500 | 1.23 | 8.09 | 19.61 | 71.07 | 74.43 | 3.42 | 1.229 | 0.44 |
AC20~230 | 1.27 | 8.26 | 18.26 | 72.21 | 72.24 | 3.422 | 1.21 | 0.42 |
1 | Yang W, Wang B, Lei S Y, et al. Combustion optimization and NOx reduction of a 600 MWe down-fired boiler by rearrangement of swirl burner and introduction of separated over-fire air[J]. Journal of Cleaner Production, 2019, 210: 1120-1130. |
2 | Wang Y Q, Zhou Y G, Bai N M, et al. Experimental investigation of the characteristics of NOx emissions with multiple deep air-staged combustion of lean coal[J]. Fuel, 2020, 280: 118416. |
3 | Song W, Wang Y L, Yang W, et al. Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing[J]. Environmental Pollution, 2019, 248: 183-190. |
4 | Ma S C, Chai J, Jiao K L, et al. Environmental influence and countermeasures for high humidity flue gas discharging from power plants[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 225-235. |
5 | Tang L, Qu J B, Mi Z F, et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards[J]. Nature Energy, 2019, 4(11): 929-938. |
6 | Zhang Y, Zhu J G, Lyu Q G, et al. Experimental study on ultra-low NOx emissions from pulverized coal preheating combustion[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(1): e2560. |
7 | Wei Z B, Li X L, Xu L J, et al. Optimization of operating parameters for low NOx emission in high-temperature air combustion[J]. Energy & Fuels, 2012, 26(5): 2821-2829. |
8 | Yang W P. Summary of flue gas denitration technology for coal-fired power plants[J]. IOP Conference Series: Earth and Environmental Science, 2019, 300: 032054. |
9 | Zhang L M, Dong X G, Hou F J, et al. Study on optimization experiment of SCR denitrification technologies in a coal-fired power plant[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 052100. |
10 | Cai L G, Shang X, Gao S Q, et al. Low-NOx coal combustion via combining decoupling combustion and gas reburning[J]. Fuel, 2013, 112: 695-703. |
11 | He J D, Song W L, Gao S Q, et al. Experimental study of the reduction mechanisms of NO emission in decoupling combustion of coal[J]. Fuel Processing Technology, 2006, 87(9): 803-810. |
12 | Han Z N, Zeng X, Yao C B, et al. Comparison of direct combustion in a circulating fluidized bed system and decoupling combustion in a dual fluidized bed system for distilled spirit lees[J]. Energy & Fuels, 2016, 30(3): 1693-1700. |
13 | Li J J, Zhang M, Yang H R, et al. The theory and practice of NOx emission control for circulating fluidized bed boilers based on the re-specification of the fluidization state[J]. Fuel Processing Technology, 2016, 150: 88-93. |
14 | Zhang Y, Zhu J G, Lyu Q G, et al. The ultra-low NOx emission characteristics of pulverized coal combustion after high temperature preheating[J]. Fuel, 2020, 277: 118050. |
15 | Zhu S J, Lyu Q G, Zhu J G, et al. Experimental study on NOx emissions of pulverized bituminous coal combustion preheated by a circulating fluidized bed[J]. Journal of the Energy Institute, 2019, 92(2): 247-256. |
16 | Zhu S J, Lyu Q G, Zhu J G, et al. Effect of air distribution on NOx emissions of pulverized coal and char combustion preheated by a circulating fluidized bed[J]. Energy & Fuels, 2018, 32(7): 7909-7915. |
17 | Bajwa D S, Peterson T, Sharma N, et al. A review of densified solid biomass for energy production[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 296-305. |
18 | Uddin M, Romlie M F, Abdullah M F, et al. A review on peak load shaving strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3323-3332. |
19 | Gu Y J, Xu J, Chen D C, et al. Overall review of peak shaving for coal-fired power units in China[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 723-731. |
20 | De L, Mendiara T, Rufas A, et al. NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor[J]. Fuel, 2015, 150: 146-153. |
21 | Speth K, Murer M, Spliethoff H. Experimental investigation of nitrogen species distribution in wood combustion and their influence on NOx reduction by combining air staging and ammonia injection[J]. Energy & Fuels, 2016, 30(7): 5816-5824. |
22 | Fan W D, Li Y, Guo Q H, et al. Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal[J]. Energy, 2017, 125: 417-426. |
23 | Li Y Z, Zhai G W, Zhang H T, et al. Experimental and predictive research on solids holdup distribution in a CFB riser[J]. Powder Technology, 2019, 344: 830-841. |
24 | Xu J, Lu X F, Zhang W Q, et al. Effects of superficial gas velocity and static bed height on gas-solid flow characteristics in a 60-meter-high transparent CFB riser[J]. Chemical Engineering Journal, 2018, 334: 545-557. |
25 | Blaszczuk A, Nowak W. Bed-to-wall heat transfer coefficient in a supercritical CFB boiler at different bed particle sizes[J]. International Journal of Heat and Mass Transfer, 2014, 79: 736-749. |
26 | Li D F, Cai R X, Zhang M, et al. Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler[J]. Energy, 2020, 192: 116503. |
27 | Anca-Couce A, Sommersacher P, Evic N, et al. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions[J]. Fuel, 2018, 222: 529-537. |
28 | Wang X, Ren Q Q, Li W, et al. Thermogravimetry-mass spectrometry analysis of nitrogen transformation during oxy-fuel combustion of coal and biomass mixtures[J]. Energy & Fuels, 2015, 29(4): 2462-2470. |
29 | Feng J, Li W Y, Xie K C, et al. Studies of the release rule of NOx precursors during gasification of coal and its char[J]. Fuel Processing Technology, 2003, 84(1/2/3): 243-254. |
30 | Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass(Part Ⅰ): Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis[J]. Fuel, 2000, 79(15): 1883-1889. |
31 | Wang F, Zeng X, Geng S L, et al. Distinctive hydrodynamics of a micro fluidized bed and its application to gas-solid reaction analysis[J]. Energy & Fuels, 2018, 32(4): 4096-4106. |
32 | Paprika M J, Komatina M S, Dakić D V, et al. Prediction of coal primary fragmentation and char particle size distribution in fluidized bed[J]. Energy & Fuels, 2013, 27(9): 5488-5494. |
33 | Zhong S, Baitalow F, Meyer B. Experimental investigation on fragmentation initiation of mm-sized coal particles in a drop-tube furnace[J]. Fuel, 2018, 234: 473-481. |
34 | Han Z N, Yue J R, Zeng X, et al. Characteristics of gas-solid micro fluidized beds for thermochemical reaction analysis[J]. Carbon Resources Conversion, 2020, 3: 203-218. |
35 | Han Z N, Yue J R, Geng S L, et al. State-of-the-art hydrodynamics of gas-solid micro fluidized beds[J]. Chemical Engineering Science, 2021, 232: 116345. |
36 | Geng C C, Li S Y, Yue C T, et al. Pyrolysis characteristics of bituminous coal[J]. Journal of the Energy Institute, 2016, 89(4): 725-730. |
37 | Zhong M, Zhang Z K, Zhou Q, et al. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: product distribution and pyrolysis gas[J]. Journal of Analytical and Applied Pyrolysis, 2012, 97: 123-129. |
38 | McKenzie L J, Tian F J, Guo X, et al. NH3 and HCN formation during the gasification of three rank-ordered coals in steam and oxygen[J]. Fuel, 2008, 87(7): 1102-1107. |
39 | Zhan H, Zhuang X Z, Song Y P, et al. Step pyrolysis of N-rich industrial biowastes: regulatory mechanism of NOx precursor formation via exploring decisive reaction pathways[J]. Chemical Engineering Journal, 2018, 344: 320-331. |
40 | Mathekga H I, Oboirien B O, North B C. A review of oxy-fuel combustion in fluidized bed reactors[J]. International Journal of Energy Research, 2016, 40(7): 878-902. |
[1] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[2] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[3] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[4] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[5] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[6] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[7] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[8] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[9] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[10] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[11] | Gang WANG, Zhihao XIA, Xiyan LI, Hong ZHANG, Zhennan HAN, Xingfei SONG, Guangwen XU. Effect of atmosphere on active performance of light-burned magnesium oxides from calcined magnesite in fluidized bed [J]. CIESC Journal, 2022, 73(8): 3699-3707. |
[12] | Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas [J]. CIESC Journal, 2022, 73(8): 3720-3730. |
[13] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[14] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[15] | Li NIU, Mengxi LIU, Haibei WANG. Hydrodynamic of mesoscale flow structure in dense phase fluidized bed [J]. CIESC Journal, 2022, 73(6): 2622-2635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||